How can y' be isolated in y'(x^2 + y^2) - 2yy' = 2x?

  • Thread starter Thread starter TsAmE
  • Start date Start date
  • Tags Tags
    Ln
TsAmE
Messages
129
Reaction score
0

Homework Statement



Find y' if y = ln( x^2 + y^2 )

Homework Equations



d / dx ( lnx ) = 1 / x

The Attempt at a Solution



y' = ( 1 / ( x^2 + y^2 ) ) * 2x + 2y * y'
( y' / 2x + 2y * y' ) = ( x^2 + y^2 )^-1

I couldn't find a way to isolate y' on its own
 
Physics news on Phys.org
TsAmE said:

The Attempt at a Solution



y' = ( 1 / ( x^2 + y^2 ) ) * 2x + 2y * y'
( y' / 2x + 2y * y' ) = ( x^2 + y^2 )^-1

Cross multiply by x2+y2


y'(x2+y2)=2x+2y*y'

Should be easier to simplify now.
 
When I cross multiply y' / (2x + 2y * y') = (x^2 + y^2)^-1 I get:

y' = (x^2 + y^2)^-1(2x + 2y * y') but the y' s arent isolated :(
 
y' (x^2+y^2) = 2x+2yy'

y'(x^2+y^2)-2yy'=2x

take y' a common factor and complete ..
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top