D.E.: Change in temperature Problem

  • Thread starter Thread starter Jeff12341234
  • Start date Start date
  • Tags Tags
    Change Temperature
Jeff12341234
Messages
179
Reaction score
0
I';m not sure if my answer is correct. Are there any mistakes?
.
.

2S2yLLz.jpg
 
Physics news on Phys.org
It is correct, except that you wrote 13 instead of 31 in the last line.

ehild
 
Jeff12341234 said:
I';m not sure if my answer is correct. Are there any mistakes?
.
.

2S2yLLz.jpg

I second the motion - I got 91.35 min.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top