- 3,372
- 465
I was looking at the D^0 \rightarrow K^+ \pi^- and D^0 \rightarrow K^- \pi^+.
The first is doubly Cabbibo suppressed whereas the other is Cabibbo favored.
I got the ratio:
A= \frac{Br( D^0 \rightarrow K^+ \pi^-)}{Br(D^0 \rightarrow K^- \pi^+)} = \frac{|V_{cd}|^2 |V_{us}|^2}{|V_{cs}|^2 |V_{ud}|^2} \approx 0.002863(12)
I used the values given for V_{ij} from wikipedia .
I then checked the pdg for the appropriate decay rates :
Br( D^0 \rightarrow K^+ \pi^-)= 1.380(28) \times 10^{-4}
Br( D^0 \rightarrow K^- \pi^+)= 3.88(5) \times 10^{-2}
From which I got their ratio:
A \approx 0.00356(9)
I was wondering why these ratios are not equal?
The first is doubly Cabbibo suppressed whereas the other is Cabibbo favored.
I got the ratio:
A= \frac{Br( D^0 \rightarrow K^+ \pi^-)}{Br(D^0 \rightarrow K^- \pi^+)} = \frac{|V_{cd}|^2 |V_{us}|^2}{|V_{cs}|^2 |V_{ud}|^2} \approx 0.002863(12)
I used the values given for V_{ij} from wikipedia .
I then checked the pdg for the appropriate decay rates :
Br( D^0 \rightarrow K^+ \pi^-)= 1.380(28) \times 10^{-4}
Br( D^0 \rightarrow K^- \pi^+)= 3.88(5) \times 10^{-2}
From which I got their ratio:
A \approx 0.00356(9)
I was wondering why these ratios are not equal?