The equation for motion for a damped oscillator is:(adsbygoogle = window.adsbygoogle || []).push({});

x(double dot) + 2x(dot) + 2 = 0

a) Show that x(t)= (A + Bt)e^-t

Where A and B are constants, satisfies the equation for motion given above.

b) At time t = 0, the oscillator is released at distance Ao from equilibrium and with a speed Uo towards the equilibrium position. Find A and B for these initial conditions.

c) Sketch the t-dpendence of x for the case in which Ao = 20m and Uo =25m/s and the case in which Ao = 20m and Uo =10m/s.

MY ATTEMPT AT ANSWER

a) Can do fine. No probems with this.

b) Setting t = 0 gives x = A

So im assuming as x = Ao then A - Ao.

However I do not know how to get further than this.

c) Dont know how to do this. Am assuming that once you have the relationships between Ao, Uo, A and B then you will be able to just plug the numbers in and graph the function.

Thanks for any help.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Damped Oscillator Question?

**Physics Forums | Science Articles, Homework Help, Discussion**