Debye internal energy for heat capacity

cristata
Messages
2
Reaction score
0
I'm working from Feynman's definition of internal energy for the Debye theory of heat capacity. I'm trying to use that to derive the normal definition of heat capacity that I've seen. But I'm running into a problem. Note, in the following V_0 is frequency, whereas V is volume (that's how Feynman writes it).

<br /> <br /> U=\frac{3Vk_{B}^{4}T^{4}}{2\pi^{2}\hbar^{3}V_{0}^{3}}\int_{0}^{\Theta_{D}/T}\frac{x^{3}e^{x}}{\left (e^x - 1\right )} dx<br /> <br />

<br /> = \frac{12\pi V k_{B}T^{4}}{\Theta_{D}^{3}}\int_{0}^{\Theta_{D}/T}\frac{x^{3}e^{x}}{\left (e^x - 1\right )} dx<br /> <br />

<br /> <br /> = \frac{4\pi V}{3}\frac{9k_{B}T^{4}}{\Theta_{D}^{3}}\int_{0}^{\Theta_{D}/T}\frac{x^{3}e^{x}}{\left (e^x - 1\right )} dx<br /> <br />

I get V = \frac{3N}{4 \pi}, in order to obtain

<br /> <br /> C_{V} =9Nk_{B}\left (\frac{T}{\Theta_{D}} \right)^{3}\int_{0}^{\Theta_{D}/T}\frac{x^{4}e^{x}}{\left (e^x - 1\right )^{2}} dx<br /> <br />

Why would V be this amount? I don't understand why this must be the case, unless I'm making a mistake somewhere, but I can't see where. The only way I can get the normal definition of Debye heat capacity is if I set V equal to this.

http://books.google.com/books?id=Ou...e+debye+temperature"&cd=1#v=onepage&q&f=false
 
Last edited:
Physics news on Phys.org
how can i solve the integration in this equation?
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top