I Defining exchange statistics of anyons in terms of Berry phase

throneoo
Messages
125
Reaction score
2
In 2D, if we define exchange statistics in terms of the phase change of the wavefunction of two identical particles when there are exchanged via adiabatic transport (https://arxiv.org/abs/1610.09260), we would discover that this phase can be arbitrary due to the topology of relative configuration space in 2D. (in 3D the phase is either 0 or pi)

However, what I'm not entirely clear about is the mechanism of the generation of such a phase. Since I'm not at all familiar with the path integral formulation of quantum mechanics, I am trying to understand it purely in the Hamiltonian formalism. According to this document (http://users.physik.fu-berlin.de/~pelster/Anyon1/hansson.pdf), we can interpret the phase as the Berry phase that arises when we adiabatically exchange these particles by varying the localized potential traps for real.

That is all fine. However what bothers me is that when we move the particles around, they follow classical trajectories. The reason why true classical indistinguishability isn't well defined is because we can distinguish the particles by their non-intersecting trajectories, which is precisely the case here. In short, I feel like we are not dealing with quantum-mechanically indistinguishable particles anymore, and that it's not an entirely correct formulation of quantum statistics.
 
Physics news on Phys.org
So my question is, how can we explain the emergence of an arbitrary phase when exchanging two identical particles in 2D, in terms of the Hamiltonian formalism? Is my understanding of the situation correct?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top