- 3,481
- 1,291
Let me first point out that I am not satisfied by any of the links posted in this thread. Neither of the two most relevant ones (the HPCWire link and the Bicycling one) cite their sources (a DOI link to the referenced papers would be nice) and pop-sci interpretations of fluid dynamic phenomena are notoriously terrible, even when reading straight off the abstract or conclusions of an actual research paper.
My very first inclination when reading the prompt at the beginning of the thread was that the middle rider would get the most benefit, and the answer that has been closest to how I would have explained that so far was given by @Ekooing. The front rider has to do the work of deflecting the oncoming air and the third rider has to deal with the turbulent wake, while the middle rider gets to exist in a bubble between the two that will largely consist of air moving an pretty close to the same average speed as the group.
So, according to what I have typed above, I would argue that yes, theory does support the view that the middle rider gets the most benefit in the short line depicted in the problem. In a long line, the system will likely be more complicated and I'd be surprised if it was exactly in the middle. In this regard, I especially doubt that earlier bicycling.com link that states that the final rider gets the most benefit in groups of up to 5. This does not pass the smell test for a fluid mechanician, and I suspect that statement stems from a misreading of the source material by the writer of that article. However, it did not cite its sources so I cannot confirm.
I disagree that this is a problem. As is common when drawing out fluids problems, if you simply assume the problem was drawn in the frame of reference of the riders, then the figure simply shows that the combination of headwind and crosswind produces a resultant wind in the same direction as the riders' formation. That's a really simple assumption and one that is common enough in fluids that it is entirely justified, in my opinion. I'd also argue that the actual velocity doesn't really matter much, because any reasonable cycling situation is not going to be in the realm of Stokes flow (##Re\leq 1##) and isn't going to be occurring at extremely high ##Re## either. In the middle of those two, the qualitative principles remain unchanged.
My very first inclination when reading the prompt at the beginning of the thread was that the middle rider would get the most benefit, and the answer that has been closest to how I would have explained that so far was given by @Ekooing. The front rider has to do the work of deflecting the oncoming air and the third rider has to deal with the turbulent wake, while the middle rider gets to exist in a bubble between the two that will largely consist of air moving an pretty close to the same average speed as the group.
haruspex said:If you read through the earlier responses in the thread you will see that neither the theory nor practice support the view that the middle of a long line is the optimum position.
So, according to what I have typed above, I would argue that yes, theory does support the view that the middle rider gets the most benefit in the short line depicted in the problem. In a long line, the system will likely be more complicated and I'd be surprised if it was exactly in the middle. In this regard, I especially doubt that earlier bicycling.com link that states that the final rider gets the most benefit in groups of up to 5. This does not pass the smell test for a fluid mechanician, and I suspect that statement stems from a misreading of the source material by the writer of that article. However, it did not cite its sources so I cannot confirm.
256bits said:The "problem" with this problem is that there is no indication as to what speed the cyclists are travelling. All we know is that there is a crosswind of some sort. In the diagram of riders and wind, is the absolute velocity of the crosswind represented, or the airspeed that the riders experience?
I disagree that this is a problem. As is common when drawing out fluids problems, if you simply assume the problem was drawn in the frame of reference of the riders, then the figure simply shows that the combination of headwind and crosswind produces a resultant wind in the same direction as the riders' formation. That's a really simple assumption and one that is common enough in fluids that it is entirely justified, in my opinion. I'd also argue that the actual velocity doesn't really matter much, because any reasonable cycling situation is not going to be in the realm of Stokes flow (##Re\leq 1##) and isn't going to be occurring at extremely high ##Re## either. In the middle of those two, the qualitative principles remain unchanged.