Definite integral using only properties

Click For Summary
The discussion revolves around evaluating the definite integral ∫log(sin(πx/2)) dx from 0 to 1 using properties of definite integrals. The user attempts to express the integral in terms of another integral involving cos(πx/2) and manipulates the expressions using logarithmic identities. They successfully derive a relationship between the two integrals but struggle with the evaluation of the first part. Ultimately, they arrive at a solvable equation, 2I_0 = I_0 - log(2), indicating progress in finding the solution. The conversation emphasizes the importance of clarity in mathematical expressions and the effective use of integral properties.
Krushnaraj Pandya
Gold Member
Messages
697
Reaction score
73

Homework Statement


evaluate the following definite integral with limits 0 to 1## ∫log(sin(πx/2)) dx ##

2. The attempt at a solution

I used ##∫f(x) = ∫f(a+b-x)## to get ## I=∫log(cos(πx/2))## with the same limits. Adding them and using ##log(m)+log(n)=log(mn)## and ##2sinxcosx=sin2x## I got ##2I=∫log(sin(πx)) - ∫log2## with same limits. The second part evaluates to ##log2##, I'm stuck on how to solve the first part. I'd appreciate some help, thank you. (Note-minimal use of indefinite integrals is to be done, this is supposed to be solved by properties of definite integrals such as mentioned in my attempt)
 
Physics news on Phys.org
Krushnaraj Pandya said:

Homework Statement


evaluate the following definite integral with limits 0 to 1## ∫log(sin(πx/2)) dx ##

2. The attempt at a solution

I used ##∫f(x) = ∫f(a+b-x)## to get ## I=∫log(cos(πx/2))## with the same limits. Adding them and using ##log(m)+log(n)=log(mn)## and ##2sinxcosx=sin2x## I got ##2I=∫log(sin(πx)) - ∫log2## with same limits. The second part evaluates to ##log2##, I'm stuck on how to solve the first part. I'd appreciate some help, thank you. (Note-minimal use of indefinite integrals is to be done, this is supposed to be solved by properties of definite integrals such as mentioned in my attempt)

Your LaTeX is very difficult to read. To use LaTeX as it is meant to be used you should type "\log" instead of "log", "\sin" instead of "sin", and "\cos" instead of "cos". Furthermore, you should type "\int_0^1" to get an integral from 0 to 1. When you do all that you get ##\int_0^1 \log( \sin(\pi x /2)) \, dx##, as well as ##\log(m)+\log(n) = \log(mn)## and ##2 \sin x\, \cos x = \sin 2x##, etc.
 
Ray Vickson said:
Your LaTeX is very difficult to read. To use LaTeX as it is meant to be used you should type "\log" instead of "log", "\sin" instead of "sin", and "\cos" instead of "cos". Furthermore, you should type "\int_0^1" to get an integral from 0 to 1. When you do all that you get ##\int_0^1 \log( \sin(\pi x /2)) \, dx##, as well as ##\log(m)+\log(n) = \log(mn)## and ##2 \sin x\, \cos x = \sin 2x##, etc.
Got it! will keep that in mind from next time, still a major improvement from normal text though- but it'll get better once I follow this. About the question though, any insights?
 
You didn't explain your work clearly. Let's say the problem is to evaluate ##I_0 = \int_0^1 \log( \sin(\frac{\pi}{2})) dx## and you have it as ##I_0 = ## (some stuff) ## + I_1## where ##I_1 = \int_0^1 \log(\sin(\pi x)) dx##.

Try expressing ##I_1## in terms of ##I_0##.

The area under the graph of ##f_1(x) = \log(\sin(\pi x)) ## from ##x = 0## to ##x = 1## is twice the area under the graph of ##f_1## from ##x = 0 ## to ##x = 1/2##. The graph of ##f_1## from ##x = 0## to ##x = 1/2## is like a contracted version of the graph of ##f_0(x) = \log(\sin(\frac{\pi}{2} x)) ## from ## x = 0## to ##x = 1##.
 
Krushnaraj Pandya said:
Got it! will keep that in mind from next time, still a major improvement from normal text though- but it'll get better once I follow this. About the question though, any insights?

Yes, but Stephen Tashi beat me to it.
 
Stephen Tashi said:
You didn't explain your work clearly. Let's say the problem is to evaluate ##I_0 = \int_0^1 \log( \sin(\frac{\pi x}{2})) dx## and you have it as ##I_0 = ## (some stuff) ## + I_1## where ##I_1 = \int_0^1 \log(\sin(\pi x)) dx##.

Try expressing ##I_1## in terms of ##I_0##.

The area under the graph of ##f_1(x) = \log(\sin(\pi x)) ## from ##x = 0## to ##x = 1## is twice the area under the graph of ##f_1## from ##x = 0 ## to ##x = 1/2##. The graph of ##f_1## from ##x = 0## to ##x = 1/2## is like a contracted version of the graph of ##f_0(x) = \log(\sin(\frac{\pi}{2} x)) ## from ## x = 0## to ##x = 1##.
So, trying to express ##I_1 = \int_0^1 \log(\sin(\pi x)) dx## in terms of ##I_0 = \int_0^1 \log( \sin(\frac{\pi x}{2})) dx##. I put x=t/2, in ##I_1##therefore dx=dt/2 and limits change from 0 to 2. while I write 1/2 outside (Then writing t as x since changing variable doesn't affect the integral-I feel like I might be wrong here??) I get ## \frac{1}{2} \int_0^2 \log(\sin(\frac{\pi}{2} t))## is equal to ## \frac{1}{2} \int_0^2 \log(\sin(\frac{\pi}{2} x))## I wrote using property-if ##f(x) = f(2a - x)## where upper limit is 2a and lower limit is 0, then it can be written as twice of that integral with half the upper limit- this evaluates to ##I_1 = \int_0^1 \log( \sin(\frac{\pi x}{2})) dx## which is equal to ##I_0## but we have ## \log 2## in RHS...so I get a wrong equation
 
Krushnaraj Pandya said:
.so I get a wrong equation
What equation are you talking about?

##2I_0 = I_0 - \ln(2)## is solvable
 
Stephen Tashi said:
What equation are you talking about?

##2I_0 = I_0 - \ln(2)## is solvable
Ohh right! I totally forgot there was 2 in the LHS, sorry...thanks a lot
 

Similar threads

Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
914