Definite integral using Riemann sums?

SMA_01
Messages
215
Reaction score
0
I'm reviewing my Calc 1 material for better understanding. So, I was reading about the area under a curve and approximating it using Riemann sums. Now, I understand the method, but I was a little confused by finding xi*. I know there is a formula for it xi*=a+Δx(i). What does the "i" stand for?

I was looking at a problem for f(x)=cos(x) and its bounded by x=0 and x=∏/2, with four subintervals. Also, the problem states to use the xi sample points as the midpoints. I understand how to do it, but I don't get what the "i" represents.

If this helps x1*=∏/16, x2*=3∏/16, x3*=5∏/16, and x4*=7∏/16

Thanks
 
Physics news on Phys.org
i is just the number of the interval
x1*=∏/16, x2*=3∏/16, x3*=5∏/16, and x4*=7∏/16
could be written
xi*=(∏/16)(2i-1)
for i=1,2,3,4
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...

Similar threads

Back
Top