Deflection of wave in dissipative media with a complex refractive index

Tinaaaaaa
Messages
7
Reaction score
2

Homework Statement


A monochromatic plane wave with wavelength 500µm is propagating through a dissipative medium with refractive index 1-0.0002i. It approaching the edge of the medium, and will pass out into free space. If the angle of incidence is not 90°, how much will the wave deflect as it passes out into free space?

Homework Equations


Snell's Law:
b5a73124df21668801a4d20054bb1b13f6709752


The Attempt at a Solution


The refractive index of free space would be 1-0*i so so far I have 1-0.0002i/1. But I don't know how to find the angles.
 
Physics news on Phys.org
I haven't previously worked this type of problem, even though I have an Optics background, but I can give you a couple of inputs to it. In a medium with complex ## n ##, the wave will propagate as ## E=E_o e^{i( n_r k_o x-\omega t)} e^{-n_i k_o x} ##. I don't think the ## e^{-n_i k_o x } ## factor will affect the boundary value conditions that determine which direction the wavefront emerges when it encounters a boundary. I think that is simply determined by ## n_r ##. If my inputs are indeed correct, the answer to this problem, for which ## n_r=1 ##, should be obvious.
 
  • Like
Likes Tinaaaaaa
Charles Link said:
I haven't previously worked this type of problem, even though I have an Optics background, but I can give you a couple of inputs to it. In a medium with complex ## n ##, the wave will propagate as ## E=E_o e^{i( n_r k_o x-\omega t)} e^{-n_i k_o x} ##. I don't think the ## e^{-n_i k_o x } ## factor will affect the boundary value conditions that determine which direction the wavefront emerges when it encounters a boundary. I think that is simply determined by ## n_r ##. If my inputs are indeed correct, the answer to this problem, for which ## n_r=1 ##, should be obvious.
Thank you this makes a lot of sense
 
  • Like
Likes Charles Link
Tinaaaaaa said:
Thank you this makes a lot of sense
A google of this question shows there seems to be a couple of different schools of thought on the subject. There are a couple of postings that talk about the Descartes-Snell law of refraction, but there are other postings that interpret it exactly like I did. I leave the question open to further discussion, but I don't know that there is a definitive answer to this one that everyone will agree upon. ## \\ ## Unless ## n_i ## is considerably greater than ## 0 ##, it may be difficult to experimentally verify any result that would show ## n_i ## could cause some effect, but if ## n_i ## gets to be significant, the wave doesn't propagate very far through the material.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top