Undergrad Derivation of Fluid Pressure In A Gravitational Field

Click For Summary
The derivation of fluid pressure under gravity presented in the discussion contains a critical flaw regarding the assumption of uniform pressure over the volume. The equation used, P = 2ρgh, incorrectly implies that pressure is constant, which contradicts the principles of fluid mechanics. The value of h is misapplied, as it represents both the height for work done and a factor in volume calculations. This misunderstanding leads to an incorrect conclusion about fluid pressure. Accurate derivation must consider the variation of pressure with depth in a fluid.
bmarc92
Messages
8
Reaction score
0
Given that ##P = ρgh##, there's obviously a problem with the following derivation of fluid pressure under gravity. Can someone spot the flaw?

$$W = mgh$$
$$W = ρVgh$$
$$F \cdot dh = ρVgh$$
$$F \cdot dh = ρ(Ah)gh$$
$$F \cdot dh = ρgAh^{2}$$
$$\frac{d(F \cdot dh)}{dh} = \frac{d(ρgAh^{2})}{dh}$$
$$F = 2ρgAh$$

$$\frac{dF}{dA} = \frac{2ρgAh}{dA}$$
$$P = 2ρgh$$
 
Last edited:
Physics news on Phys.org
Your derivation assumes that the pressure is uniform over the volume V. This is not correct.
 
Topic about reference frames, center of rotation, postion of origin etc Comoving ref. frame is frame that is attached to moving object, does that mean, in that frame translation and rotation of object is zero, because origin and axes(x,y,z) are fixed to object? Is it same if you place origin of frame at object center of mass or at object tail? What type of comoving frame exist? What is lab frame? If we talk about center of rotation do we always need to specified from what frame we observe?

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
2K
  • · Replies 1 ·
Replies
1
Views
948
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K