I Derivation of Fluid Pressure In A Gravitational Field

Click For Summary
The derivation of fluid pressure under gravity presented in the discussion contains a critical flaw regarding the assumption of uniform pressure over the volume. The equation used, P = 2ρgh, incorrectly implies that pressure is constant, which contradicts the principles of fluid mechanics. The value of h is misapplied, as it represents both the height for work done and a factor in volume calculations. This misunderstanding leads to an incorrect conclusion about fluid pressure. Accurate derivation must consider the variation of pressure with depth in a fluid.
bmarc92
Messages
8
Reaction score
0
Given that ##P = ρgh##, there's obviously a problem with the following derivation of fluid pressure under gravity. Can someone spot the flaw?

$$W = mgh$$
$$W = ρVgh$$
$$F \cdot dh = ρVgh$$
$$F \cdot dh = ρ(Ah)gh$$
$$F \cdot dh = ρgAh^{2}$$
$$\frac{d(F \cdot dh)}{dh} = \frac{d(ρgAh^{2})}{dh}$$
$$F = 2ρgAh$$

$$\frac{dF}{dA} = \frac{2ρgAh}{dA}$$
$$P = 2ρgh$$
 
Last edited:
Physics news on Phys.org
Your derivation assumes that the pressure is uniform over the volume V. This is not correct.
 
Thread 'Why higher speeds need more power if backward force is the same?'
Power = Force v Speed Power of my horse = 104kgx9.81m/s^2 x 0.732m/s = 1HP =746W Force/tension in rope stay the same if horse run at 0.73m/s or at 15m/s, so why then horse need to be more powerfull to pull at higher speed even if backward force at him(rope tension) stay the same? I understand that if I increase weight, it is hrader for horse to pull at higher speed because now is backward force increased, but don't understand why is harder to pull at higher speed if weight(backward force)...

Similar threads

Replies
11
Views
2K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
922
  • · Replies 30 ·
2
Replies
30
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
Replies
1
Views
355
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K