Derivation of rotation formula in a general coordinate system

ShayanJ
Science Advisor
Insights Author
Messages
2,801
Reaction score
606

Homework Statement


[/B]
In a set of axes where the z axis is the axis of rotation of a finite rotation, the rotation matrix is given by

## \left[ \begin{array}{lcr} &\cos\phi \ \ \ &\sin\phi \ \ \ &0 \\ & -\sin\phi \ \ \ &\cos\phi \ \ \ &0 \\ &0 \ \ \ &0 \ \ \ &1 \end{array} \right]##.

Derive the rotation formula

##\vec{r'}=\vec r \cos\phi+\hat n(\hat n \cdot \vec r)(1-\cos\phi)+(\vec r \times \hat n) \sin\phi ##

by transforming to an arbitrary coordinate system, expressing the orthogonal matrix of transformation in terms of the direction cosines of the axis of the finite rotation.

Homework Equations

The Attempt at a Solution



As far as I know, the transformation is ## S'=A^{-1} S A ## where A is a general rotation matrix and its such a big matrix that even writing it down is a tedious thing to do, let alone multiplying it several times with another matrix! Is there any other way to do this?

Thanks
 
Physics news on Phys.org
You have:
r'x = rxcosφ + rysinφ
r'y = -rxsinφ + rycosφ
r'z=rz
n=k
r
cosφ =( rxi + ryj + rzk)cosφ
r'xi =( rxcosφ + rysinφ)i
r'yj= (-rxsinφ + rycosφ)j
r'zk=rz k
r
' = ( rxcosφ + rysinφ)i + (-rxsinφ + rycosφ)j + rzk
= rcosφ - rysinφi + rxsinφj -rzcosφk + rzk
= rcosφ + (rxk)sinφ + (k*r)(1-cosφ)k
 
  • Like
Likes ShayanJ
Thanks Fred.
Can you generalize your proof for a general ##\hat n## ?
 
Shyan said:

Homework Statement


[/B]
In a set of axes where the z axis is the axis of rotation of a finite rotation, the rotation matrix is given by

## \left[ \begin{array}{lcr} &\cos\phi \ \ \ &\sin\phi \ \ \ &0 \\ & -\sin\phi \ \ \ &\cos\phi \ \ \ &0 \\ &0 \ \ \ &0 \ \ \ &1 \end{array} \right]##.

Derive the rotation formula

##\vec{r'}=\vec r \cos\phi+\hat n(\hat n \cdot \vec r)(1-\cos\phi)+(\vec r \times \hat n) \sin\phi ##

by transforming to an arbitrary coordinate system, expressing the orthogonal matrix of transformation in terms of the direction cosines of the axis of the finite rotation.

Homework Equations




The Attempt at a Solution



As far as I know, the transformation is ## S'=A^{-1} S A ## where A is a general rotation matrix and its such a big matrix that even writing it down is a tedious thing to do, let alone multiplying it several times with another matrix! Is there any other way to do this?

Thanks

First note that R(\hat{n} , \phi) leaves the unit vector \hat{n} invariant, i.e., R_{ij}n_{j} = n_{i} . \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (1)
Also note the following trivial identities
\delta_{ij}n_{j} = n_{i} , \ \ \ n_{i} n_{j} n_{j} = n_{i} (\hat{n} \cdot \hat{n}) = n_{i} , and \epsilon_{ijk}n_{j}n_{k} = 0 . So, covariance requires R_{ij} to be of the form
R_{ij} = a(\phi) \ \delta_{ij} + b(\phi) \ n_{i}n_{j} + c(\phi) \ \epsilon_{ijk}n_{k} , \ \ \ \ (2) where a,b,c are functions of the only available scalar \phi, the rotation angle. Now, if you substitute (2) in (1) and use the above identities, you find a + b = 1.
Next, consider the special case where \hat{n} = \hat{e}_{3} = (0,0,1) .
So, R_{11}(e_{3},\phi) = a(\phi) = \cos \phi , and
R_{12}(e_{3},\phi) = c(\phi) \epsilon_{123}n_{3} = c(\phi) = - \sin \phi .
Substituting these in the general form (2), we obtain
R_{ij} = \delta_{ij} \ \cos \phi + n_{i}n_{j} \left(1 - \cos \phi \right) - \epsilon_{ijk} n_{k} \sin \phi . Now, contracting this with x_{j} gives you
\bar{x}_{i} = x_{i} \cos \phi + n_{i} \left( \hat{n} \cdot \vec{x}\right) \left( 1 - \cos \phi \right) + \left( \hat{n} \times \vec{x} \right)_{i} \sin \phi .
You can also do it geometrically by decomposing the vector \vec{x} into the sum of two vectors: one parallel to \hat{n} and the other perpendicular to \hat{n}
\vec{x} = \left( \hat{n} \cdot \vec{x}\right) \hat{n} + \vec{x}_{\perp} . \ \ \ (3) So, rotation by an angle \phi will leaves the parallel vector invariant and sends \vec{x}_{\perp} into
R \vec{x}_{\perp} = \vec{x}_{\perp} \cos \phi + \left( \hat{n} \times \vec{x}_{\perp} \right) \sin \phi .
Since \hat{n} \times \vec{x} = \hat{n} \times \vec{x}_{\perp}, we find
\vec{x} \to R \vec{x} = \left( \hat{n} \cdot \vec{x}\right) \hat{n} + \vec{x}_{\perp} \cos \phi + \left( \hat{n} \times \vec{x} \right) \sin \phi . Now, the final result follow from substituting (3).
 
  • Like
Likes BvU and ShayanJ
That was beautiful!
Thanks Sam!
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top