A Derivation of the Heisenberg equation for electron density

GiovanniNunziante
Messages
2
Reaction score
1
I'm studying plasmons from "Haken-Quantum Field Theory of Solids", and i need some help in the calculation of the equation of motion of eletrons' density
\begin{equation}
\hat{\rho}_{\overrightarrow{q}} = \frac{1}{\sqrt{V}} \sum_{\overrightarrow{k}}
\hat{a}^{\dagger}_{\overrightarrow{k}+\overrightarrow{q}} \hat{a}_{\overrightarrow{k}}
\label{eq:rhoaadag}
\end{equation}
where ##\hat{a}## and ##\hat{a}^{\dagger}## are fermionic operator
\begin{align}
\left\lbrace\hat{a}_{\overrightarrow{k}},\hat{a}^{\dagger}_{\overrightarrow{k'}}\right\rbrace = \delta_{\overrightarrow{k'},\overrightarrow{k}}
\\
\left\lbrace\hat{a}_{\overrightarrow{k}},\hat{a}_{\overrightarrow{k'}}\right\rbrace = \left\lbrace\hat{a}^{\dagger}_{\overrightarrow{k}},\hat{a}^{\dagger}_{\overrightarrow{k'}}\right\rbrace = 0 \quad \forall \overrightarrow{k},\overrightarrow{k}'
\label{eq:anticomm}
\end{align}
The book starts from the Heisneberg equation for ##\hat{a}^{\dagger}_{\overrightarrow{k}+\overrightarrow{q}}\hat{a}_{\overrightarrow{k}}##
\begin{equation}
i\hbar\frac{d}{dt}\left(\hat{a}^{\dagger}_{\overrightarrow{k}+\overrightarrow{q}} \hat{a}_{\overrightarrow{k}} \right) = \left[\hat{a}^{\dagger}_{\overrightarrow{k}+\overrightarrow{q}} \hat{a}_{\overrightarrow{k}},\hat{H}\right]
\label{eq:eqmotopre}
\tag{4}
\end{equation}
where the Hamiltonian operator is
\begin{equation}
\begin{aligned}
\hat{H} = \int d\overrightarrow{r} \hat{\psi}^{\dagger}\left(\overrightarrow{r}\right) \left(-\frac{\hbar^2}{2 m^*} \nabla^2 \right) \hat{\psi}
\left(\overrightarrow{r}\right) + \\
\frac{1}{2}\int\int d\overrightarrow{r} d\overrightarrow{r}' \hat{\psi}^{\dagger}\left(\overrightarrow{r}'\right) \hat{\psi}^{\dagger}\left(\overrightarrow{r}\right) \frac{e^2}{|\overrightarrow{r}'-\overrightarrow{r}|} \hat{\psi}\left(\overrightarrow{r}\right) \hat{\psi}\left(\overrightarrow{r}'\right)
\end{aligned}
\label{eq:hsecquant}
\end{equation}
with
\begin{equation}
\hat{\psi}\left(\overrightarrow{r}\right)=\frac{1}{\sqrt{V}} \sum_{\overrightarrow{k}} \hat{a}_{\overrightarrow{k}} \exp\left[i\overrightarrow{k}\cdot\overrightarrow{r}\right]
\label{eq:annichila}
\end{equation}
\begin{equation}
\hat{\psi}^{\dagger}\left(\overrightarrow{r}\right)=\frac{1}{\sqrt{V}} \sum_{\overrightarrow{k}} \hat{a}^{\dagger}_{\overrightarrow{k}} \exp\left[- i\overrightarrow{k}\cdot\overrightarrow{r}\right]
\label{eq:crea}
\end{equation}
The first doubt is on the Hamiltonian operator rewritten in terms of creation and annihilation operator.
According to my calculations, the Hamiltonian operator is
\begin{equation}
\hat{H}=\sum_{\overrightarrow{k}}
E_{\overrightarrow{k}}\,
\hat{a}^{\dagger}_{\overrightarrow{k}} \hat{a}_{\overrightarrow{k}} + \frac{1}{2} \sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}\,
\hat{a}^{\dagger}_{\overrightarrow{k}_1}
\hat{a}^{\dagger}_{\overrightarrow{k}_2} \hat{a}_{\overrightarrow{k}_3} \hat{a}_{\overrightarrow{k}_4}
\label{eq:hamampiezze}
\end{equation}
where
\begin{equation}
v_{q'} = \frac{4\pi e^2}{V q'^2};\quad \overrightarrow{q}'=\overrightarrow{k}_1 - \overrightarrow{k}_4
\label{eq:vq}
\end{equation}
while the book states that
$$
\overrightarrow{q}'=\overrightarrow{k}_1 + \overrightarrow{k}_3 - \overrightarrow{k}_2 - \overrightarrow{k}_4
$$
I ignore this thing, so i calculate the commutator in the Heisenberg equation
\begin{align*}
i\hbar\frac{d}{dt}\left(\hat{a}^{\dagger}_{\overrightarrow{k}+\overrightarrow{q}} \hat{a}_{\overrightarrow{k}} \right)
=
\left(E_{\overrightarrow{k}} - E_{\overrightarrow{k}+\overrightarrow{q}}\right)
\hat{a}^{\dagger}_{\overrightarrow{k}+\overrightarrow{q}}
\hat{a}_{\overrightarrow{k}}
+
%prima somma ps
& \frac{1}{2}
\sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}
\delta_{\overrightarrow{k}_2,\overrightarrow{k}_3}
%%%%argomento ps
\left[\hat{a}^{\dagger}_{\overrightarrow{k} + \overrightarrow{q}}
\hat{a}_{\overrightarrow{k}},
\hat{a}^{\dagger}_{\overrightarrow{k}_1}
\hat{a}_{\overrightarrow{k}_4}\right]
\label{eq:primo}
\\
%ss
&-\sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}
%arg ss
\hat{a}^{\dagger}_{\overrightarrow{k}_1 + \overrightarrow{q}}
\hat{a}_{\overrightarrow{k}_3}
\hat{a}^{\dagger}_{\overrightarrow{k}_2}
\hat{a}_{\overrightarrow{k}_4}
\label{eq:secondo}
\\
%ts
&+\sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}
%arg ts
\hat{a}^{\dagger}_{\overrightarrow{k}_1}
\hat{a}_{\overrightarrow{k}_3 - \overrightarrow{q} }
\hat{a}^{\dagger}_{\overrightarrow{k}_2}
\hat{a}_{\overrightarrow{k}_4}
\label{eq:terzo}
\\
%qs
&-\sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}
%arg qs
\hat{a}^{\dagger}_{\overrightarrow{k}_1}
\hat{a}_{\overrightarrow{k}_3}
\hat{a}^{\dagger}_{\overrightarrow{k}_2 + \overrightarrow{q}}
\hat{a}_{\overrightarrow{k}_4}
\label{eq:quarto}
\\
%quintas
&+\sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}
%arg quintas
\hat{a}^{\dagger}_{\overrightarrow{k}_1}
\hat{a}_{\overrightarrow{k}_3}
\hat{a}^{\dagger}_{\overrightarrow{k}_2}
\hat{a}_{\overrightarrow{k}_4 - \overrightarrow{q}}
\label{eq:quinto}
\end{align*}
the sum with the commutator
$$
\left[\hat{a}^{\dagger}_{\overrightarrow{k} + \overrightarrow{q}}
\hat{a}_{\overrightarrow{k}},
\hat{a}^{\dagger}_{\overrightarrow{k}_1}
\hat{a}_{\overrightarrow{k}_4}\right]
$$
is equal to zero.

Second doubt : I exchange the indices in the last two sums (can i do it ?)

In the second to last sum, i exchange \[\overrightarrow{k}_1\] with ##\overrightarrow{k}_2## and $\overrightarrow{k}_3$ with $\overrightarrow{k}_4$, while, in the last sum, ##\overrightarrow{k}_3## with $\overrightarrow{k}_4$ and $\overrightarrow{k}_1## with ##\overrightarrow{k}_2##
\begin{align*}
%ss
&-\sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}
%arg ss
\hat{a}^{\dagger}_{\overrightarrow{k}_1 + \overrightarrow{q}}
\hat{a}_{\overrightarrow{k}_3}
\hat{a}^{\dagger}_{\overrightarrow{k}_2}
\hat{a}_{\overrightarrow{k}_4}
\label{eq:primosec}
\\
%ts
&+\sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}
%arg ts
\hat{a}^{\dagger}_{\overrightarrow{k}_1}
\hat{a}_{\overrightarrow{k}_3 - \overrightarrow{q} }
\hat{a}^{\dagger}_{\overrightarrow{k}_2}
\hat{a}_{\overrightarrow{k}_4}
\label{eq:secondosec}
\\
%qs
&-\sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}
%arg qs
\hat{a}^{\dagger}_{\overrightarrow{k}_2}
\hat{a}_{\overrightarrow{k}_4}
\hat{a}^{\dagger}_{\overrightarrow{k}_1 + \overrightarrow{q}}
\hat{a}_{\overrightarrow{k}_3}
\label{eq:terzosec}
\\
%quintas
&+\sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}
%arg quintas
\hat{a}^{\dagger}_{\overrightarrow{k}_2}
\hat{a}_{\overrightarrow{k}_4}
\hat{a}^{\dagger}_{\overrightarrow{k}_1}
\hat{a}_{\overrightarrow{k}_3 - \overrightarrow{q}}
\label{eq:quartosec}
\end{align*}
i manipulate them, but i don't find the solution of the book, that is
\begin{align*}
i\hbar\frac{d}{dt}\left(\hat{a}^{\dagger}_{\overrightarrow{k}+\overrightarrow{q}} \hat{a}_{\overrightarrow{k}} \right)
=
\left(E_{\overrightarrow{k}} - E_{\overrightarrow{k}+\overrightarrow{q}}\right)
\hat{a}^{\dagger}_{\overrightarrow{k}+\overrightarrow{q}}
\hat{a}_{\overrightarrow{k}}
%ss
\\
&+\sum_{k', q'}
v_{q'} \;
%arg ss
\left[\left(\hat{a}^{\dagger}_{k + q}
\hat{a}_{k + q'}
\hat{a}^{\dagger}_{k' + q'}
\hat{a}_{k'}
\right)
-
\left(\hat{a}^{\dagger}_{k' + q'}
\hat{a}_{k'}
\hat{a}^{\dagger}_{k + q- q'}
\hat{a}_k\right)
\right]
\end{align*}
Am I on the right way? Can you give me some hint in order to find the solution of the book?

Thank you for who will answer me
 
Physics news on Phys.org
I solved it. if someone wants the solution, i will post it
 
Please post for future generations of posters... I might be interested in the future, but not in the near 5-10 years. :-)
 
  • Like
Likes GiovanniNunziante
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...

Similar threads

Back
Top