mtmn
- 2
- 0
Homework Statement
I am trying to derive for myself the velocity of the expectation value from the information given, specifically that
<x> = \int_{-\infty}^{\infty}x|\Psi (x,t)|^2 dt (1)
Eq (1) can be transformed into,
\frac{d<x>}{dt} = -\frac{i\hbar}{m}\int\Psi^*\frac{\partial\Psi}{\partial x}dx (2)
I couldn't come up with Eq. (2). Below is my work.
2. Homework Equations .
Schr\ddot{o}dinger Equation
i\hbar\frac{\partial\Psi}{\partial t}=-\frac{\hbar^2}{2m}\frac{\partial^2\Psi}{\partial x^2}+V\Psi
The Attempt at a Solution
Taking the derivative of both sides of Eq. (1) results in,
\frac{d<x>}{dt} = \int x\frac{\partial}{\partial t}|\Psi|^2 dx (3)
As \Psi^2 = \Psi^*\Psi taking the derivative of the r.h.s of Eq.(3) results in,
\int x\left(\Psi^*\frac{\partial\Psi}{\partial t}+\Psi\frac{\partial\Psi^*}{\partial t}\right) (4)
Manipulating the Schr\ddot{o}dinger Equation to get \frac{\partial\Psi}{\partial T}
-\frac{\partial\Psi}{\partial t} = \frac{\hbar}{2im}{\partial^2\Psi}{\partial x^2}-\frac{V\Psi}{i\hbar} (5)
Multiplying both sides of Eq. (5) by i^2,
\frac{\partial\Psi}{\partial t} = \frac{i\hbar}{2m}\frac{\partial^2\Psi}{\partial x^2}-\frac{iV\Psi}{\hbar} (6)
Taking the complex conjugate of Eq. (6),
\frac{\partial\Psi^*}{\partial t} = -\frac{i\hbar}{2m}\frac{\partial^2\Psi^*}{\partial x^2}+\frac{iV\Psi^*}{\hbar}(7)
Substituting Eq. (6) & (7) into Eq. (4) results in,
=\Psi^*\frac{i\hbar}{2m}\frac{\partial^2\Psi}{\partial x^2}-V\frac{i\Psi^*\Psi}{\hbar}-\Psi\frac{i\hbar}{2m}\frac{\partial^2\Psi^*}{\partial x^2}+V\frac{i\Psi^*\Psi}{\hbar}
=\Psi^*\frac{i\hbar}{2m}\frac{\partial^2\Psi}{\partial x^2}-\Psi\frac{i\hbar}{2m}\frac{\partial^2\Psi^*}{\partial x^2}
=\frac{i\hbar}{2m}\left(\Psi^*\frac{\partial^2\Psi}{\partial x^2}-\Psi\frac{\partial^2\Psi^*}{\partial x^2}\right)(8)
Eq. (8) is equivalent to,
\frac{i\hbar}{2m}\left[\frac{\partial}{\partial x}\left(\Psi^*\frac{\partial\Psi}{\partial x}-\Psi\frac{\partial\Psi^*}{\partial x}\right)\right](9)
(The inside can be confirmed just by taking the derivative, which I'm going to leave out for brevities sake)
So, the velocity of the expectation value now becomes,
\frac{d<x>}{dt} = \frac{i\hbar}{2m}\int x\frac{\partial}{\partial x}\left(\Psi^*\frac{\partial\Psi}{\partial x}-\Psi\frac{\partial\Psi^*}{\partial x}\right)dx(10)
Taking the constant out I solved the integrand by using integration by parts.
Let u=x
dv=\frac{\partial}{\partial x}\left(\Psi^*\frac{\partial\Psi}{\partial x}-\Psi\frac{\partial\Psi^*}{\partial x}\right)dx.
Then, du=dx
v=\left(\Psi^*\frac{\partial\Psi}{\partial x}-\Psi\frac{\partial\Psi^*}{\partial x}\right)
Substituting this into \int udv = \int uv-\int vdu
x\left(\Psi^*\frac{\partial\Psi}{\partial x}-\Psi\frac{\partial\Psi^*}{\partial x}\right)\bigg|_{\infty}^{\infty}-\int \left(\Psi^*\frac{\partial\Psi}{\partial x}-\Psi\frac{\partial\Psi^*}{\partial x}\right)dx (11)
Before the integral that term goes to 0 because (as I'm told, I don't actually know how to prove this) \Psi goes to zero must quicker then x goes to infinity. So the velocity becomes,
\frac{d<x>}{dt} = -\frac{i\hbar}{2m}\int \left(\Psi^*\frac{\partial\Psi}{\partial x}-\Psi\frac{\partial\Psi^*}{\partial x}\right)dx(12)
I transformed,
\Psi\frac{\partial\Psi^*}{\partial x}=\frac{\partial\Psi^*\Psi}{\partial x}-\Psi^*\frac{\partial\Psi}{\partial x}(13)
Substituting Eq (13) into Eq (12),
\frac{d<x>}{dt} = -\frac{i\hbar}{2m}\int \left(\Psi^*\frac{\partial\Psi}{\partial x}-\frac{\partial\Psi^*\Psi}{\partial x}+\Psi^*\frac{\partial\Psi}{\partial x}\right)dx
=\frac{d<x>}{dt} = -\frac{i\hbar}{2m}\int \left(2\Psi^*\frac{\partial\Psi}{\partial x}-\frac{\partial\Psi^*\Psi}{\partial x}\right)dx(14)
Eq.(14) Becomes
\frac{d<x>}{dt} = -\frac{i\hbar}{m}\int \Psi^*\frac{\partial\Psi}{\partial x}dx+\frac{i\hbar}{2m}\int\frac{\partial\Psi^*\Psi}{\partial x}dx(15)
The left part of the r.h.s. of Eq.(15) is what I want but I don't know how to eliminate the right portion of it.
Anyone have any ideas??
Thanks in advance!
Matt