Derivation Of Torque On Current Loop Due To Uniform Magnetic Field

Click For Summary

Homework Help Overview

The discussion revolves around deriving the torque on a current loop in a uniform magnetic field, with specific focus on circular and rectangular loops. Participants explore the mathematical expressions and integrals involved in the derivation process.

Discussion Character

  • Exploratory, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants discuss deriving torque for different shapes of loops, such as circular and rectangular. Questions arise about the generality of the derivation for various loop shapes and the complexity of applying integral theorems. Some participants suggest approximating complex shapes with simpler forms.

Discussion Status

The discussion is ongoing, with participants offering various approaches to the problem. Some express uncertainty about the complexity of the integral expressions and the applicability of certain theorems. There is recognition of the need for a rigorous mathematical proof for different loop shapes.

Contextual Notes

Participants note the challenge of deriving a general expression for torque and question the assumptions made in the original post. There is a mention of the potential difficulty in proving results for arbitrary loop shapes.

Aurelius120
Messages
269
Reaction score
24
Homework Statement
Derive an expression for torque due to uniform magnetic field in a loop
Relevant Equations
$$\tau=BINA\sin \theta$$
I can derive it for a circular loop:
$$dF=BI\sin\phi\ dl=BIr\sin\phi\ d\phi$$
Torque on quarter circle when field is parallel to plane of loop=$$\tau=\int^{(\pi/2)}_0 BI \ dl \sin\phi (r\sin\phi)$$$$=\int^{(\pi/2)}_0 BIr^2 \sin^2\phi\ d\phi$$
Net torque=##4\tau=BIA##
If magnetic field is at any other angle, only its parallel component will exert torque=##BIA\sin\theta##
I know the derivation for rectangular loop(length=l, breadth=b).
Force on each arm =##IbB ##
Torque=##2IbB\frac{a}{2}=BIA##
If magnetic field is at any other angle, only its parallel component will exert torque=##BIA\sin\theta##
Is there a general derivation for such cases that holds for (at least the most common shapes)? Will it be too advanced for my level?
 
  • Like
Likes   Reactions: Delta2
Physics news on Phys.org
Write down the integral expression for the torque as a circulation integral around the loop. Then apply a suitable integral theorem.
 
Orodruin said:
Write down the integral expression for the torque as a circulation integral around the loop. Then apply a suitable integral theorem.
Ok that seems advanced for me🫤
 
Then prove it for a square loop, then approximate the full loop by a series of several ever smaller square loops (the torques from sides shared by two squares will cancel out since the current runs in opposite directions - leaving only the outer loop). However, this is essentially proving the integral theorem.
 
  • Like
Likes   Reactions: Aurelius120
Orodruin said:
Write down the integral expression for the torque as a circulation integral around the loop. Then apply a suitable integral theorem.
Hasn't he done almost this in the OP, the only thing that changes for a generic loop is that r depends on phi, right?

EDIT: OH I think in the OP he omits the other vector constituent of the torque (##BIdl\sin\phi (r\cos\phi)## which sums to zero for a circular loop but doesnt sum to zero for a generic loop.)

EDIT2: On second thought that integral is zero for any loop shape. This thread triggered an interesting not so hard math problem:
If ##r(\phi)## is a positive function with period ##2\pi## prove that $$\int_0^{2\pi} r^2(\phi)\sin(\phi)\cos(\phi)d\phi=0$$ and $$\int_0^{2\pi} r^2(\phi)=2A$$ where A the area of the closed loop described by ##r=r(\phi)##.

EDIT3: On ... third thought this problem is not so simple after all if one wants a mathematically rigorous proof for any closed loop but ok I tried my best, I haven't read any derivation from a book from this I ll check Jackson to see if it has it.
 
Last edited:

Similar threads

Replies
1
Views
1K
Replies
8
Views
1K
  • · Replies 37 ·
2
Replies
37
Views
5K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 15 ·
Replies
15
Views
1K
Replies
7
Views
3K
Replies
1
Views
1K
Replies
3
Views
2K