Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Derivation of Yukawa potential: quandry

  1. May 17, 2008 #1


    User Avatar

    Can someone provide some help with a derivation in Peskin and Schroeder (equation 4.126, p.122):

    V(\bold{x}) = \int \frac{d^3q}{(2\pi)^3} \frac{-g^2}{|\bold{q}|^2+m^2}e^{i\bold{q}\cdot\bold{r}}

    = \frac{-g^2}{4\pi^2}\int_0^\infty dq\; q^2\; \frac{e^{iqr}-e^{-iqr}}{iqr}} \frac{1}{q^2+m^2}

    They derive the position-space Yukawa potential by Fourier-transforming the Feynman amplitude for the process. Perhaps I'm just being obtuse, but the simplifications from the first to the second line of the equation (once they've done the angular integration) don't seem clear to me.

    In particular, what is the justification for this term: [tex]\frac{e^{iqr}-e^{-iqr}}{iqr}}[/tex]

    Any help would be appreciated.
  2. jcsd
  3. May 17, 2008 #2


    User Avatar
    Science Advisor
    Homework Helper

    Use [tex] \bold{q}\cdot\bold{r} = qrcos(\theta ) [/tex]

    [tex] d^3q = q^2sin(\theta ) d\phi dq [/tex]

    [tex] q \text{ from } 0 \text{ to} +\infty [/tex]

    [tex] \theta \text{ from } 0 \text{ to}\pi [/tex]

    [tex] \phi \text{ from } 0 \text{ to}2\pi [/tex]
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook