Santiago
- 2
- 0
Could anybody help to spot the inconsistency in the following reasoning?
When calculating the normal derivative of the metric tensor I get:
\partial_\mu g^{\rho \sigma} = g^{\rho \lambda} g^{\sigma \gamma} \partial_\mu g_{\lambda \gamma} + 2 \partial_\mu g^{\rho \sigma}, (1)
which means that:
g^{\rho \lambda} g^{\sigma \gamma} \partial_\mu g_{\lambda \gamma} = -\partial_\mu g^{\rho \sigma}. (2)
And I don't see how this could be.
That's how I get this result:
<br /> \partial_\mu g^{\rho \sigma} = <br /> \partial_\mu (g^{\rho \lambda} g^{\sigma \gamma} g_{\lambda \gamma}) = <br /> g^{\rho \lambda} g^{\sigma \gamma} \partial_\mu g_{\lambda \gamma} + g^{\rho \lambda} g_{\lambda \gamma} \partial_\mu g^{\sigma \gamma} + g_{\lambda \gamma} g^{\sigma \gamma} \partial_\mu g^{\rho \lambda} = <br /> g^{\rho \lambda} g^{\sigma \gamma} \partial_\mu g_{\lambda \gamma} + \delta^\rho_\gamma \partial_\mu g^{\sigma \gamma} + \delta^\sigma_\lambda \partial_\mu g^{\rho \lambda} = <br />
<br /> = g^{\rho \lambda} g^{\sigma \gamma} \partial_\mu g_{\lambda \gamma} + 2 \partial_\mu g^{\rho \sigma}.<br /> (3)
Could anybody show how to get directly the right hand side of equation (2) from the left hand side, or show where the mistake in the equation (3) is?
Thanks a lot.
When calculating the normal derivative of the metric tensor I get:
\partial_\mu g^{\rho \sigma} = g^{\rho \lambda} g^{\sigma \gamma} \partial_\mu g_{\lambda \gamma} + 2 \partial_\mu g^{\rho \sigma}, (1)
which means that:
g^{\rho \lambda} g^{\sigma \gamma} \partial_\mu g_{\lambda \gamma} = -\partial_\mu g^{\rho \sigma}. (2)
And I don't see how this could be.
That's how I get this result:
<br /> \partial_\mu g^{\rho \sigma} = <br /> \partial_\mu (g^{\rho \lambda} g^{\sigma \gamma} g_{\lambda \gamma}) = <br /> g^{\rho \lambda} g^{\sigma \gamma} \partial_\mu g_{\lambda \gamma} + g^{\rho \lambda} g_{\lambda \gamma} \partial_\mu g^{\sigma \gamma} + g_{\lambda \gamma} g^{\sigma \gamma} \partial_\mu g^{\rho \lambda} = <br /> g^{\rho \lambda} g^{\sigma \gamma} \partial_\mu g_{\lambda \gamma} + \delta^\rho_\gamma \partial_\mu g^{\sigma \gamma} + \delta^\sigma_\lambda \partial_\mu g^{\rho \lambda} = <br />
<br /> = g^{\rho \lambda} g^{\sigma \gamma} \partial_\mu g_{\lambda \gamma} + 2 \partial_\mu g^{\rho \sigma}.<br /> (3)
Could anybody show how to get directly the right hand side of equation (2) from the left hand side, or show where the mistake in the equation (3) is?
Thanks a lot.