Derivatives of a Constant in a Trigonometric Function

Jani08
Messages
6
Reaction score
0

Homework Statement



Find y'' if y=1/3(1+cos^2(√x))

Homework Equations





The Attempt at a Solution



Now I believe I got the first derivative right since the teacher marked ir right, but my real question here is what do I do with the 1/3? Is it ok to throw away the constant when I see derivative and just worry bout the other the thing in the parenthesis?

y'=1/3(cox√x)(-sin√x)(1/√x)
y''=??
 
Physics news on Phys.org
Yes, it is ok.
 
if a is a constant
y=a*f(t)
then
dy/dt=a*df/dt
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top