Derivatives of the Lagrangian in curved space

AI Thread Summary
The discussion focuses on the derivation of the Lagrangian for a free particle in curved space, specifically addressing how to transition from the first to the third line in the equations provided. The cancellation of the factor of 1/2 when taking the derivative with respect to q^l-dot is a key point, with the participants analyzing the implications of variable changes and the properties of the metric g_ij. There is a clarification that taking the derivative does not assume i equals j, which is crucial for understanding the resulting expressions. The mathematical steps demonstrate how the derivative results in g_{il} dot{q}^i, confirming the calculations. Overall, the conversation emphasizes the nuances of working with derivatives in the context of curved spacetime Lagrangians.
rocawear4321
Messages
2
Reaction score
0
Follow along at http://star-www.st-and.ac.uk/~hz4/gr/GRlec4+5+6.pdf and go to PDF page 9 or page 44 of the "slides." I'm trying to see how to go from the first to the third line. If we write the free particle Lagrangian and use q^i-dot and q^j-dot as the velocities and metric g_ij, how is it we cancel out the factor of 1/2 when when take the q^l-dot derivative? It looks like more than just a simple change of variables from j to l. If instead we took dL/dq^j-dot I'd expect to get 0.5m x g_ij x q^i-dot . I don't think I can assume I'm only taking derivatives when i=j, so how does this work?
 
Physics news on Phys.org
## \frac{\partial}{\partial \dot{q}^l}(\frac 1 2 g_{ij} \dot{q}^i \dot{q}^j)=[\frac 1 2 g_{ij}(\frac{\partial \dot{q}^i}{\partial \dot{q}^l} \dot{q}^j+\dot{q}^i \frac{\partial \dot{q}^j}{\partial \dot{q}^l})]=[\frac 1 2 g_{ij}(\delta^i_l \dot{q}^j+\dot{q}^i \delta^j_l)] =[\frac 1 2(g_{lj} \dot{q}^j+g_{il}\dot{q}^i)]=[\frac 1 2(g_{il} \dot{q}^i+g_{il}\dot{q}^i)]=g_{il}\dot{q}^i##
 
Last edited:
Shyan said:
## \frac{\partial}{\partial \dot{q}^l}(\frac 1 2 g_{ij} \dot{q}^i \dot{q}^j)=[\frac 1 2 g_{ij}(\frac{\partial \dot{q}^i}{\partial \dot{q}^l} \dot{q}^j+\dot{q}^i \frac{\partial \dot{q}^j}{\partial \dot{q}^l})]=[\frac 1 2 g_{ij}(\delta^i_l \dot{q}^j+\dot{q}^i \delta^j_l)] =[\frac 1 2(g_{lj} \dot{q}^j+g_{il}\dot{q}^i)]=[\frac 1 2(g_{il} \dot{q}^i+g_{il}\dot{q}^i)]=g_{il}\dot{q}^i##
Thank you a ton! That was clear and helpful.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top