lamerali
- 62
- 0
Hi, I'm working with finding the derivatives of trigonometric functions but I'm not confidant with some of my answers. if someone would go over these derivatives i would appreciate it. thanks in advance!
determine \frac{dy}{dx} . do not simplify.
question 1
y = sec \sqrt[3]{x}
my answer:
y1 = sec \sqrt[3]{x} tan\sqrt[3]{x}
= sec \sqrt[3]{x} tan\sqrt[3]{x} \frac{1}{3} x^{- \frac{2}{3}}
= \frac{sec \sqrt[3]{x} tan \sqrt[3]{x}}{ 3\sqrt[3]{x^{2}}}
question 2
y = 4cos^{3} (\pi x)
my answer:
y1 = 12(-sin ^{2} \pi x) \pi
= -12(\pi sin ^{2} \pi x
question 3
y = 2x(\sqrt{x} - cot x)
my answer:
y1 = 2(\sqrt{x} - cot x) + (2x) \frac{1}{2} x^{- \frac{1}{2}} - (-csc ^{2} x))
= 2(\sqrt{x} - cot x) + (2x) \frac{csc^{2}x}{2\sqrt{x}}
= 2(\sqrt{x} - cot x) + \frac{x csc^{2}x}{\sqrt{x}}
question 4
y = tan ^{2} (cos x)
my answer
y1 = 2sec^{2} (-sinx)
question 5
y = \frac{1}{1 + tanx}
my answer
y1 = \frac{1}{sec^{2}x}
question 6
sinx + siny = 1
cos x + cos y \frac{dy}{dx} = 0
\frac{dy}{dx} = - \frac{cosx}{cosy}
I'm not sure how i did with these. if someone could overlook them i'd be very greatful.
determine \frac{dy}{dx} . do not simplify.
question 1
y = sec \sqrt[3]{x}
my answer:
y1 = sec \sqrt[3]{x} tan\sqrt[3]{x}
= sec \sqrt[3]{x} tan\sqrt[3]{x} \frac{1}{3} x^{- \frac{2}{3}}
= \frac{sec \sqrt[3]{x} tan \sqrt[3]{x}}{ 3\sqrt[3]{x^{2}}}
question 2
y = 4cos^{3} (\pi x)
my answer:
y1 = 12(-sin ^{2} \pi x) \pi
= -12(\pi sin ^{2} \pi x
question 3
y = 2x(\sqrt{x} - cot x)
my answer:
y1 = 2(\sqrt{x} - cot x) + (2x) \frac{1}{2} x^{- \frac{1}{2}} - (-csc ^{2} x))
= 2(\sqrt{x} - cot x) + (2x) \frac{csc^{2}x}{2\sqrt{x}}
= 2(\sqrt{x} - cot x) + \frac{x csc^{2}x}{\sqrt{x}}
question 4
y = tan ^{2} (cos x)
my answer
y1 = 2sec^{2} (-sinx)
question 5
y = \frac{1}{1 + tanx}
my answer
y1 = \frac{1}{sec^{2}x}
question 6
sinx + siny = 1
cos x + cos y \frac{dy}{dx} = 0
\frac{dy}{dx} = - \frac{cosx}{cosy}
I'm not sure how i did with these. if someone could overlook them i'd be very greatful.