Deriving a formula for KE (rolling + projection)

AI Thread Summary
The discussion focuses on deriving the kinetic energy formula E_k=(gmR^2)/4h for a ball projected from a ramp. Participants emphasize the need to clarify the problem statement and show prior effort to solve it. The kinetic energy at projection, rather than at landing, is highlighted, with the importance of including rotational kinetic energy in calculations. Key equations mentioned include the moment of inertia for a solid sphere and the relationships between time, radius, and velocity. Understanding these concepts is essential for accurately deriving the kinetic energy formula.
foreverlostinclass
Messages
1
Reaction score
0
Homework Statement
A ball is rolled down a ramp, then projected a distance R from the end of a curved ramp. The kinetic energy of the ball when it lands is given by the equation: E_k=(gmR^2)/4h, where g is the gravitational acceleration constant (9.81 m/s^2), m is the mass of the ball & h is the height from the ground to the bottom of the ramp.
Edit: Actually it's the kinetic energy when the ball is projected, not when it lands (sorry, misread the description).
Relevant Equations
moment of inertia of a solid sphere: I = 2/5mr^2
K = 1/2mv^2 + 1/2Iw^2
U = mgh
I'm not sure where the equation E_k=(gmR^2)/4h comes from & I also don't really know where to start either :(
 
Physics news on Phys.org
According to our rules, to receive help, you need to show some credible effort towards answering the question. How about telling us what you do know and how you would approach this problem?
Please read, understand and follow our homework guidelines, especially item 4, here
https://www.physicsforums.com/threads/homework-help-guidelines-for-students-and-helpers.686781/

Also, it would help if you posted the statement of the problem as was given to you. Note that you are saying that the kinetic energy of the ball is given at the moment of projection but it is not at all clear what you are asked to find.
 
foreverlostinclass said:
The kinetic energy of the ball when it lands is given by the equation: E_k=(gmR^2)/4h, where g is the gravitational acceleration constant (9.81 m/s^2), m is the mass of the ball & h is the height from the ground to the bottom of the ramp.
Edit: Actually it's the kinetic energy when the ball is projected, not when it lands (sorry, misread the description).
Relevant Equations: moment of inertia of a solid sphere: I = 2/5mr^2
K = 1/2mv^2 + 1/2Iw^2
U = mgh
It is still not quite true. That formula ignores the rotational KE.
To deduce it, you have to assume the bottom of the ramp is horizontal.
Find
  • how long it would take to land, in terms of g and h
  • the relationship between that time, R, and the velocity with which it leaves the ramp.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top