Deriving Contravariant Form of Levi-Civita Tensor

Click For Summary
SUMMARY

The contravariant form of the Levi-Civita tensor is derived from its covariant form using the relationship ##\varepsilon^{i,j,k}=\frac{1}{\sqrt{g}}\epsilon^{i,j,k}##. The discussion highlights the transformation properties of the Levi-Civita symbol and its connection to the determinant of the metric tensor. The Jacobian of the coordinate transformation plays a crucial role in establishing the behavior of the tensor under changes of coordinates. The final expression for the contravariant components is confirmed as ##\epsilon^{jkl}=\frac{1}{\sqrt{g}} \Delta^{jkl}##, establishing the relationship between the covariant and contravariant forms in a Riemannian manifold.

PREREQUISITES
  • Understanding of Riemannian geometry and tensor calculus
  • Familiarity with the Levi-Civita symbol and its properties
  • Knowledge of metric tensors and their determinants
  • Proficiency in coordinate transformations and Jacobians
NEXT STEPS
  • Study the properties of the Levi-Civita symbol in different dimensions
  • Learn about the transformation laws for tensors in Riemannian geometry
  • Explore the implications of pseudo-tensors in physics
  • Investigate the applications of the Levi-Civita tensor in general relativity
USEFUL FOR

Mathematicians, physicists, and students studying differential geometry, particularly those focusing on Riemannian manifolds and tensor analysis.

AndersF
Messages
27
Reaction score
4
TL;DR
If the covariant form for the Levi-Civita is defined as ##\varepsilon_{i,j,k}:=\sqrt{g}\epsilon_{i,j,k}##, how could be shown from this definition that it's contravariant form is given by ##\varepsilon^{i,j,k}=\frac{1}{\sqrt{g}}\epsilon^{i,j,k}##?
The covariant form for the Levi-Civita is defined as ##\varepsilon_{i,j,k}:=\sqrt{g}\epsilon_{i,j,k}##. I want to show from this definition that it's contravariant form is given by ##\varepsilon^{i,j,k}=\frac{1}{\sqrt{g}}\epsilon^{i,j,k}##.My attemptWhat I have tried is to express this tensor ##\varepsilon^{i j k}## through the contraction with the metric tensor of ##\varepsilon_{i j k}## the contravariant form, and then to replace the definition of ##\varepsilon_{i j k}##:##\varepsilon^{i j k}=g^{i p} g^{j q} g^{k r} \varepsilon_{p q r}=g^{i p} g^{j q} g^{k r} \sqrt{g} \epsilon_{p q r}##

This expression reminds me of the the expression of the determinant of the dual metric tensor, ##g^{-1}=\det (g^{ij})##, through the Levi-Civita symbol:

##g^{-1}=g^{1 p} g^{2 q} g^{3 r} \epsilon_{p q r}##

But I'm stuck here, as I don't know how to match these expressions... Would there be any way to achieve this? Would this be a good way to prove the theorem?
 
Physics news on Phys.org
I guess you talk about a 3D Riemannian manifold here. Then let's define ##\Delta_{jkl}=\Delta^{jkl}## as the totally antisymmetric symbol with ##\Delta_{123}=\Delta^{123}=1##.

Then
$$\epsilon_{jkl}=\sqrt{g} \Delta_{jkl} \quad \text{with} \quad g=\mathrm{det}(g_{\mu \nu})$$
are covariant (pseudo) tensor components.

Indeed, using the transformation law for covariant tensor components you get
$$\epsilon_{abc}'=\sqrt{g} \Delta_{jkl} \frac{\partial q^j}{\partial q^{\prime a}} \frac{\partial q^k}{\partial q^{\prime b}} \frac{\partial q^l}{\partial q^{\prime c}}=\sqrt{g} J \Delta_{abc},$$
where
$$J=\mathrm{det} (\partial_a' q^j)$$
is the Jacobian of the coordinate transformation.

On the other hand
$$g' = \mathrm{det} g_{ab}'=\mathrm{det} (\partial_a' q^j \partial_b' q^k g_{jk})=J^2 g.$$
So if ##J>0##, then indeed
$$\epsilon_{abc}'=\sqrt{g'} \Delta_{abc}.$$
If ##J<0## you get an additional minus sign. That's why ##\epsilon_{jkl}## are the components of a pseudo-tensor rather than a true tensor.

For the contravariant components you get
$$\epsilon^{jkl}=g^{ja} g^{kb} g^{lc} \epsilon_{abc} = \sqrt{g} g^{ja} g^{kb} g^{lc} \Delta_{abc} = \sqrt{g} \mathrm{det}(g^{ab}) \Delta^{jkl}=\frac{1}{g} \sqrt{g} \Delta^{jkl} = \frac{1}{\sqrt{g}} \Delta^{jkl},$$
where I've used that in a Riemannian manifold ##\mathrm{det}(g_{ab})>0##.
 
  • Like
Likes   Reactions: AndersF

Similar threads

  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 26 ·
Replies
26
Views
2K
  • · Replies 38 ·
2
Replies
38
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K