I Deriving Contravariant Form of Levi-Civita Tensor

AndersF
Messages
27
Reaction score
4
TL;DR Summary
If the covariant form for the Levi-Civita is defined as ##\varepsilon_{i,j,k}:=\sqrt{g}\epsilon_{i,j,k}##, how could be shown from this definition that it's contravariant form is given by ##\varepsilon^{i,j,k}=\frac{1}{\sqrt{g}}\epsilon^{i,j,k}##?
The covariant form for the Levi-Civita is defined as ##\varepsilon_{i,j,k}:=\sqrt{g}\epsilon_{i,j,k}##. I want to show from this definition that it's contravariant form is given by ##\varepsilon^{i,j,k}=\frac{1}{\sqrt{g}}\epsilon^{i,j,k}##.My attemptWhat I have tried is to express this tensor ##\varepsilon^{i j k}## through the contraction with the metric tensor of ##\varepsilon_{i j k}## the contravariant form, and then to replace the definition of ##\varepsilon_{i j k}##:##\varepsilon^{i j k}=g^{i p} g^{j q} g^{k r} \varepsilon_{p q r}=g^{i p} g^{j q} g^{k r} \sqrt{g} \epsilon_{p q r}##

This expression reminds me of the the expression of the determinant of the dual metric tensor, ##g^{-1}=\det (g^{ij})##, through the Levi-Civita symbol:

##g^{-1}=g^{1 p} g^{2 q} g^{3 r} \epsilon_{p q r}##

But I'm stuck here, as I don't know how to match these expressions... Would there be any way to achieve this? Would this be a good way to prove the theorem?
 
Physics news on Phys.org
I guess you talk about a 3D Riemannian manifold here. Then let's define ##\Delta_{jkl}=\Delta^{jkl}## as the totally antisymmetric symbol with ##\Delta_{123}=\Delta^{123}=1##.

Then
$$\epsilon_{jkl}=\sqrt{g} \Delta_{jkl} \quad \text{with} \quad g=\mathrm{det}(g_{\mu \nu})$$
are covariant (pseudo) tensor components.

Indeed, using the transformation law for covariant tensor components you get
$$\epsilon_{abc}'=\sqrt{g} \Delta_{jkl} \frac{\partial q^j}{\partial q^{\prime a}} \frac{\partial q^k}{\partial q^{\prime b}} \frac{\partial q^l}{\partial q^{\prime c}}=\sqrt{g} J \Delta_{abc},$$
where
$$J=\mathrm{det} (\partial_a' q^j)$$
is the Jacobian of the coordinate transformation.

On the other hand
$$g' = \mathrm{det} g_{ab}'=\mathrm{det} (\partial_a' q^j \partial_b' q^k g_{jk})=J^2 g.$$
So if ##J>0##, then indeed
$$\epsilon_{abc}'=\sqrt{g'} \Delta_{abc}.$$
If ##J<0## you get an additional minus sign. That's why ##\epsilon_{jkl}## are the components of a pseudo-tensor rather than a true tensor.

For the contravariant components you get
$$\epsilon^{jkl}=g^{ja} g^{kb} g^{lc} \epsilon_{abc} = \sqrt{g} g^{ja} g^{kb} g^{lc} \Delta_{abc} = \sqrt{g} \mathrm{det}(g^{ab}) \Delta^{jkl}=\frac{1}{g} \sqrt{g} \Delta^{jkl} = \frac{1}{\sqrt{g}} \Delta^{jkl},$$
where I've used that in a Riemannian manifold ##\mathrm{det}(g_{ab})>0##.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top