Deriving Group Velocity with Frequency and Wavelength | Simple Homework Solution

ramses07
Messages
11
Reaction score
0

Homework Statement



so I am asked to derive the group velocity of an equation in terms of its frequency and wavelength, but I am stuck at a simple derivative, which is df/d(1/n) where is the frequency and n is the wavelenght.

Homework Equations



the group velocity is dw/dk

The Attempt at a Solution



so i got this far

dw/dk = d(2pif)/d(2pi(1/n)

i canceled out the 2pi since they are constants.

= df/d(1/n) f= frequency, and n = wavelength

but i just can't figure out what to do with this derivative.
 
Physics news on Phys.org
You need to use the chain rule. You may find it easier to see what you need to do when it's written this way:

\frac{d\omega}{dk} = \frac{d\omega}{d\lambda}\frac{d\lambda}{dk}
 
Normally, you just get the dispersion relation when do your calculations, which gives \omega^{2}=f(k)
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top