Deriving MTW's Equation 21.90 from Equation 21.83

  • Thread starter Thread starter TerryW
  • Start date Start date
  • Tags Tags
    deriving
TerryW
Gold Member
Messages
222
Reaction score
20

Homework Statement



This isn't a request for assistance, I am just posting this to help anyone else in the future who wants to see how MTW's equation 21.90 can be developed from the simple Lagrangian.

MTW's Equation 21.83 is simply ##16π\mathfrak{L}_{geom} = (-^{(4)}g)^{(4)}R##

One page later, equation 21.90 appears -

##16π\mathfrak{L}_{geom} = \mathfrak{L}_{geomADM} = -g_{ij}∂π^{ij}/∂t - N\mathcal{H} - N^i\mathcal{H}^i -2\big{[}π^{ij}N_j - \frac{1}{2} N^iTr{π}+ N^{|i}(g)^½\big{]}_{,i}##

The intervening paragraphs include some pointers as to how this transformation is achieved but I was unable to work out how equations 21.88 and 21.89 could be used to complete the job. I didn't really want to move on without completing a proof that 21.90 does indeed come from 21.83, so I bought the reproduction of ADM's original paper, but that didn't help either as 21.90 is simply introduced as "an equation which can be derived" from some basic quantities (Unless I am missing something).

I then found a paper by Alex Golovnev on ArXiv, which I have been able to work through to the point where I was able to follow his derivation to establish:

##(-^{(4)}g)^{(4)}R = γ^½N(^{(3)}R +K^{ij}K_{ij} - K^i_iK^j_j) - 2 (-^{(4)}g)^½ ∇_μ (K^i _i n^μ) - 2γ^½{ }^{(3)}ΔN##

where ##γ =\ ^{(3)}g##

All that needs to be done now is to show that Golovnev's equation can be transformed into MTW's 21.90, which can be achieved as follows:

First I established how Trπ, Trπ^2 and TrK are related:

(i) ##Trπ = g_{ij}π^{ij} = γ^½[g_{ij}g^{ij}TrK - g_{ij}K^{ij}] = γ^½(3TrK - TrK) = γ^½(2TrK)##
(ii) ##Trπ^2 = π^{ij}π_{ij} = γ(g^{ij}g_{ij}(TrK)^2 - g^{ij}K_{ij}TrK - g_{ij}K^{ij}TrK +K^{ij}K_{ij})##
∴ ##Trπ^2 = γ(3(TrK)^2 - (TrK)^2-(TrK)^2 + Tr(K^2)) = γ((TrK)^2 + Tr(K^2))##
(edited to correct last term in line above)
So
##γ^½N(^{(3)}R +K^{ij}K_{ij} - K^i_iK^j_j) - 2 (-^{(4)}g)^½ ∇_μ (K^i _i n^μ) - 2γ^½{ }^{(3)}ΔN##
##= γ^½N(^{(3)}R +TrK^2 - (TrK)^2) - 2 (-^{(4)}g)^½ ∇_μ (K^i _i n^μ) - 2γ^½{ }^{(3)}ΔN##
Then using Golovnev's identity for ##- 2 (-^{(4)}g)^½ ∇_μ (K^i _i n^μ)##
##= γ^½N(^{(3)}R +TrK^2 - (TrK)^2) - 2∂_0(γ^½ TrK) +2γ^½{ }^{(3)}∇_j(K^i_iN^j) - 2γ^½{ }^{(3)}ΔN##
Then using (i) above and the general expression for the divergence of a vector (MTW 21.85 p 579):
##= γ^½N(^{(3)}R +TrK^2 - (TrK)^2) - ∂_0(Trπ) +2∂_j(γ^½TrKN^j) - 2γ^½{ }^{(3)}ΔN##
##= -γ^½N( (TrK)^2- TrK^2 -^{(3)}R) - ∂_0(π^{ij}γ_{ij}) +2∂_i(γ^½TrKN^i) - 2γ^½(N^{|i}{}_{|i})##
##= -γ^½N( (TrK)^2- TrK^2 -^{(3)}R) - π^{ij}\dot γ_{ij}- \dot π^{ij}γ_{ij}+(N^iTrπ)_{,i}- 2(γ^½N^{|i})_{,i}##
##= -2γ^½N((TrK)^2- TrK^2)+ γ^½N((TrK)^2- TrK^2)+γ^½N^{(3)}R - π^{ij}\dot γ_{ij}- \dot π^{ij}γ_{ij} +\quad(N^iTrπ- 2γ^½N^{|i})_{,i}##
##= -[2γ^½N(g^{ij}TrK- K^{ij})K_{ij} + π^{ij}\dot γ_{ij}] - γ^½N(TrK^2- (TrK)^2-^{(3)}R) - \dot π^{ij} γ_{ij} \quad+(N^iTrπ- 2γ^½N^{|i})_{,i}##
##= -2π^{ij}[NK_{ij} + ½\dot γ_{ij}] - γ^½N(TrK^2- (TrK)^2-^{(3)}R) - \dot π^{ij} γ_{ij} +(N^iTrπ- 2γ^½N^{|i})_{,i}##
Using Golovnev's Equation (3)...
##= - \dot π^{ij} γ_{ij} - γ^½N(TrK^2- (TrK)^2-^{(3)}R) -2π^{ij}N_{i|j}+(N^iTrπ- 2γ^½N^{|i})_{,i}##
##= - \dot π^{ij} γ_{ij} - N[γ^{-½}[γ(TrK^2+(TrK)^2)-½(4γ(TrK)^2)]-γ^{½{}(3)}R] -2π^{ij}N_{i|j}+(N^iTrπ- 2γ^½N^{|i})_{,i}##
##= - \dot π^{ij} γ_{ij} - N[γ^{-½}[Trπ^2-½(Trπ)^2-γ^{½{}(3)}R] -2π^{ij}N_{i|j}+(N^iTrπ- 2γ^½N^{|i})_{,i}##
##= - \dot π^{ij} γ_{ij} - N\mathcal{H} -2π^{ij}N_{j,i} + 2π^{ij{}(3)}Γ^k_{ji}N_k+(N^iTrπ- 2γ^½N^{|i})_{,i}##
##= - \dot π^{ij} γ_{ij} - N\mathcal{H} -2π^{ij}N_{j,i} -2π^{ij}{}_{,i}N_j +2π^{ij}{}_{,i}N_j+ 2π^{ij{}(3)}Γ^k_{ji}N_k+(N^iTrπ- 2γ^½N^{|i})_{,i}##
##= - \dot π^{ij} γ_{ij} - N\mathcal{H} -(2π^{ij}N_j)_{,i} +2π^{ij}{}_{,i}N_j+ 2π^{ij{}(3)}Γ^k_{ji}N_k+(N^iTrπ- 2γ^½N^{|i})_{,i}##
##= - \dot π^{ij} γ_{ij} - N\mathcal{H} -(2π^{ij}N_j)_{,i} +2π^{ik}{}_{,i}N_k+ 2π^{ij{}(3)}Γ^k_{ji}N_k +2π^{ij{}(3)}Γ^k_{jk}N_i-2π^{ij{}(3)}Γ^k_{jk}N_i \quad+(N^iTrπ- 2γ^½N^{|i})_{,i}##
##= - \dot π^{ij} γ_{ij} - N\mathcal{H} +2π^{ik}{}_{,i}N_k+ 2π^{ij{}(3)}Γ^k_{ji}N_k +2π^{ij{}(3)}Γ^k_{jk}N_i-2π^{ij{}(3)}Γ^k_{jk}N_i \quad-(2π^{ij}N_j-N^iTrπ+2γ^½N^{|i})_{,i}##
Then a little bit of index swapping gives
##= - \dot π^{ij} γ_{ij} - N\mathcal{H} +2π^{ki}{}_{,k}N_i+ 2π^{kj{}(3)}Γ^i_{jk}N_i +2π^{ij{}(3)}Γ^k_{jk}N_i-2π^{ik{}(3)}Γ^j_{kj}N_i \quad-(2π^{ij}N_j-N^iTrπ+2γ^½N^{|i})_{,i}##
Then remembering that ##π^{ki}## is a tensor density
##= - \dot π^{ij} γ_{ij} - N\mathcal{H} -N_i(-2π^{ki}{}_{|k})-(2π^{ij}N_j-N^iTrπ+2γ^½N^{|i})_{,i}##
##= - \dot π^{ij} γ_{ij} - N\mathcal{H} -N_i\mathcal{H^i}-2(π^{ij}N_j-½N^iTrπ+γ^½N^{|i})_{,i}##

MTW's Equation 21.90 at last!
 
Last edited:
  • Like
Likes Dragoi Flavius and nrqed
Physics news on Phys.org
##16π\mathfrak{L}_{geom} = \mathfrak{L}_{geomADM} = -g_{ij}∂π^{ij}/∂t - N\mathcal{H} - N^i\mathcal{H}^i -2\big{[}π^{ij}N_j - \frac{1}{2} N^iTr{π}+ N^{|i}(g)^½\big{]}_{,i}##Homework EquationsSee aboveThe Attempt at a SolutionThis is not a question, so I have provided the solution in the statement
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top