Deriving Rotation Matrix from Strang pg.230

  • Thread starter Thread starter interested_learner
  • Start date Start date
  • Tags Tags
    Rotation
interested_learner
Messages
210
Reaction score
1
This is another attempt at an earlier question that maybe wasn't done in a readable format.

This was in Strang page 230. Could someone derive this?

<br /> if K = \left[\begin{array} {cc} 0&amp;-1\\1&amp;0\end{array}\right]<br /> <br /> then \quad e^{Kt} = \left[\begin{array} {cc} cos t &amp; -sin t\\sin t &amp; cos t\end{array}\right]<br />
 
Last edited by a moderator:
Physics news on Phys.org
By working out what exp{Kt} looks like: K has a nice form, so do the powers of K, hence it is possible to simply work out what the sum defining exp{Kt} is.
 
The eigenvalues of K are i and -i so, over the complex numbers, K is equivalent to the diagonal matrix with i and -i on the diagonal. In fact, since the corresponding eigenvectors are multiples of [1, -i] and [1, i] respectively, we have:
\left[\begin{array}{cc}0 &amp; -1 \\ 1 &amp; 0\end{array}\right]=\left[\begin{array}{cc}1 &amp; 1 \\-i &amp; i \end{array}\right] \left[\begin{array}{cc}i &amp; 0 \\0 &amp; -i\end{array}\right]\left[\begin{array}{cc}\frac{i}{2} &amp; -\frac{1}{2} \\-\frac{i}{2} &amp; -\frac{1}{2}\end{array}\right]

The point of "diagonalizing" like that is that if A= CDC^{-1} then A^2= (CDC^{-1})(CDC^{-1})= CD^2C^{-1} and similarly for higher powers. Then, using the Taylor's series for ex:e^x= 1+ x+ \frac{1}{2}x^2+ \cdot\cdot\cdot + \frac{1}{n!}x^n+ \cdot\cdot\cdot, we have
e^{CDC^{-1}}= I+ CDC^{-1}+ \frac{1}{2}CD^2C^{-1}+ \cdot\cdot\cdot+ \frac{1}{n!}CD^nC^{-1}+ \cdot\cdot\cdot
Since I= CC-1, that is
C(I+ D+ \frac{1}{2}D^2+ \cdot\cdot\cdot + \frac{1}{n!}D^n+ \cdot\cdot\cdot = Ce^DC^{-1}
For a diagonal matrix, powers just give powers on the diagonal and adding just adds the diagonal values, for diagonal matrix D, eD is just the diagonal matrix with exponentials on the diagonal. In this case
e^{Kt}= \left[\begin{array}{cc}1 &amp; 1 \\-i &amp; i \end{array}\right]\left[ \begin{array}{cc}e^{it} &amp; 0 \\ 0 &amp; e^{-it}\end{array}\right]\left[\begin{array}{cc}\frac{i}{2} &amp; -\frac{1}{2} \\-\frac{i}{2} &amp; -\frac{1}{2}\end{array}\right]
Use e^{it}= cos(t)+ isin(t) and multiply it out.
 
Wow! Thanks

Wow! Such a quick and clear answer. Thanks!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top