The eigenvalues of K are i and -i so, over the complex numbers, K is equivalent to the diagonal matrix with i and -i on the diagonal. In fact, since the corresponding eigenvectors are multiples of [1, -i] and [1, i] respectively, we have:
\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{cc}1 & 1 \\-i & i \end{array}\right] \left[\begin{array}{cc}i & 0 \\0 & -i\end{array}\right]\left[\begin{array}{cc}\frac{i}{2} & -\frac{1}{2} \\-\frac{i}{2} & -\frac{1}{2}\end{array}\right]
The point of "diagonalizing" like that is that if A= CDC^{-1} then A^2= (CDC^{-1})(CDC^{-1})= CD^2C^{-1} and similarly for higher powers. Then, using the Taylor's series for ex:e^x= 1+ x+ \frac{1}{2}x^2+ \cdot\cdot\cdot + \frac{1}{n!}x^n+ \cdot\cdot\cdot, we have
e^{CDC^{-1}}= I+ CDC^{-1}+ \frac{1}{2}CD^2C^{-1}+ \cdot\cdot\cdot+ \frac{1}{n!}CD^nC^{-1}+ \cdot\cdot\cdot
Since I= CC-1, that is
C(I+ D+ \frac{1}{2}D^2+ \cdot\cdot\cdot + \frac{1}{n!}D^n+ \cdot\cdot\cdot = Ce^DC^{-1}
For a diagonal matrix, powers just give powers on the diagonal and adding just adds the diagonal values, for diagonal matrix D, eD is just the diagonal matrix with exponentials on the diagonal. In this case
e^{Kt}= \left[\begin{array}{cc}1 & 1 \\-i & i \end{array}\right]\left[ \begin{array}{cc}e^{it} & 0 \\ 0 & e^{-it}\end{array}\right]\left[\begin{array}{cc}\frac{i}{2} & -\frac{1}{2} \\-\frac{i}{2} & -\frac{1}{2}\end{array}\right]
Use e^{it}= cos(t)+ isin(t) and multiply it out.