A Deriving the derivative boundary conditions from natural formulation

maistral
Messages
235
Reaction score
17
TL;DR Summary
How to derive the finite difference derivative formulation from the natural boundary formulation?
PS: This is not an assignment, this is more of a brain exercise.

I intend to apply a general derivative boundary condition f(x,y). While I know that the boxed formulation is correct, I have no idea how to acquire the same formulation if I come from the general natural boundary condition formulation. I honestly do not know what am I doing wrong. Can someone check where am I incorrect?
67846231_357745925149080_6309915412955922432_n.jpg
 
  • Like
Likes exln
Physics news on Phys.org
Looks OK. So what is the problem?
 
Chestermiller said:
Looks OK. So what is the problem?

The left side and the right side have different results.
 
If ##q_x## is the heat flux in the x direction, then ##q_x## is always given by $$q_x=-k\frac{dT}{dx}$$irrespective of whether it is the left- or the right boundary. Of course, the sign of the flux in the x direction can be negative. So, at the fictitious point at the left boundary, you have:
$$T(-\Delta x)=T(+\Delta x)+q_x(0)\Delta x$$and, at the fictitious point at the right boundary, you have:
$$T(L+\Delta x)=T(L-\Delta x)-q_x(L)\Delta x$$
 
that is a good answer
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top