Deriving the fourier transform

iScience
Messages
466
Reaction score
5

Homework Statement



derive the Fourier sine and cosine transforms of $$f(x) = e^{-cx}$$ by using $$e^{iax}=cos(ax)+isin(ax)$$ and computing the integral $$\int_0 ^{\infty} e^{-cx}e^{iax}dx$$.

Homework Equations

The Attempt at a Solution



i'm completely clueless, all i did was evaluate what they told me to.

$$\int_0 ^{\infty} e^{-cx}e^{iax}dx = \int_0 ^{\infty} e^{(ia-c)x}dx$$
$$= \frac{e^{(ia-c)x}}{ia-c}\Big|_0^{\infty} = \frac{cos(ax)+isin(ax)}{ia-c}\Big|_0^{\infty} =-\frac{1}{ia-c}$$
 
Last edited:
Physics news on Phys.org
If you split your last result in imaginary and real part, you can relate it to the integrals in your other thread.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top