Deriving the MTW version of the Einstein-Hilbert density

  • Thread starter Thread starter TerryW
  • Start date Start date
  • Tags Tags
    Density deriving
TerryW
Gold Member
Messages
222
Reaction score
20

Homework Statement



I've been working through a paper by Alexey Golovnev, title 'ADM and massive gravity' arXiv.1302.0687v4 [gr-qc] 26 March 2013. I am hoping to use his result for the Einstein-Hilbert density to achieve my aim of finding a way to derive Equation 21.90 in MTW. I have worked my way through the paper and can see that all the equations given are OK, with one crucial exception:

Homework Equations



The final link in the chain is this:

##-2 \sqrt{-g}\nabla_μ (K^i_in^μ) = -2∂_0(\sqrt{γ}K^i_i) + 2\sqrt{γ}^{(3)}\nabla_j(K^i_iN^j)##

My attempt to prove this identity ends up with an extra term. Can anyone tell me where I've gone wrong?

The Attempt at a Solution



Using the derivations in the paper:

##-2 \sqrt{-g}\nabla_μ (K^i_in^μ) = -2 \sqrt{-g}^{(4)}\nabla_0 (K^i_in^0) - 2 \sqrt{-g}^{(4)}\nabla_j (K^i_in^j)##

##= -2 ^{(4)}\nabla_0 (\sqrt{γ}NK^i_i\frac{1}{N}) - 2 \sqrt{-g}^{(4)}\nabla_j (K^i_in^j)##

##= -2 ^{(4)}\nabla_0 (\sqrt{γ}K^i_i) - 2 \sqrt{-g}[∂_j(K^i_in^j) + ^{(4)}Γ^j_{αj}(K^i_in^α)]##

##= -2 ∂_0 (\sqrt{γ}K^i_i) - 2 \sqrt{-g}∂_j(K^i_in^j) -2\sqrt{-g} ^{(4)}Γ^j_{0j}(K^i_in^0) -2\sqrt{-g} ^{(4)}Γ^j_{kj}(K^i_in^k)##

##= -2 ∂_0 (\sqrt{γ}K^i_i) + 2 \sqrt{-g}∂_j(K^i_i\frac{N^j}{N}) -2\sqrt{-g} ^{(4)}Γ^j_{0j}(K^i_i\frac{1}{N}) +2\sqrt{-g} ^{(4)}Γ^j_{kj}(K^i_i\frac{N^k}{N})##

##= -2 ∂_0 (\sqrt{γ}K^i_i) + 2 \sqrt{-g}∂_j(K^i_iN^j)(\frac{1}{N}) +2 \sqrt{-g}(K^i_iN^j)∂_j(\frac{1}{N})-2\sqrt{γ}N^{(4)}Γ^j_{0j}(K^i_i\frac{1}{N})##
## +2\sqrt{γ} N^{(4)}Γ^j_{kj}(K^i_i\frac{N^k}{N})##

##= -2 ∂_0 (\sqrt{γ}K^i_i) + 2 \sqrt{γ}∂_j(K^i_iN^j) +2\sqrt{γ}^{(4)}Γ^j_{kj}K^i_iN^k+2\sqrt{-g}(K^i_iN^j)(\frac{-1}{N^2})∂_jN -2\sqrt{γ} ^{(4)}Γ^j_{0j}(K^i_i)##

##= -2 ∂_0 (\sqrt{γ}K^i_i) + 2 \sqrt{γ}∂_j(K^i_iN^j) +2\sqrt{γ}(^{(3)}Γ^j_{kj} +\frac{N^j}{N}K_{jk})K^i_iN^k)-2\sqrt{γ}K^i_i(\frac{N^j}{N}∂_jN + ^{(4)}Γ^j_{0j})##

##= -2 ∂_0 (\sqrt{γ}K^i_i) + 2 \sqrt{γ}^{(3)}\nabla_j(K^i_iN^j) +2\sqrt{γ}\frac{N^j}{N}K_{jk}K^i_iN^k -2\sqrt{γ}K^i_i\frac{N^j}{N}∂_jN -2\sqrt{γ}K^i_{i}## ##^{(4)}Γ^j_{0j}##

The first two terms are what I was aiming for. The three remaining terms are 'surplus' to requirements!

I can reduce these three terms down to just one as follows

##2\sqrt{γ}\frac{N^j}{N}K_{jk}K^i_iN^k -2\sqrt{γ}K^i_i\frac{N^j}{N}∂_jN -2\sqrt{γ}K^i_{i} ## ##^{(4)}Γ^j_{0j}##

##= 2\sqrt{γ}K^i_i[\frac{N^j}{N}K_{jk}N^k -\frac{N^j}{N}∂_jN - ^{(4)}Γ^j_{0j}]##

##= 2\sqrt{γ}K^i_i[\frac{N^j}{N}K_{jk}N^k -\frac{N^j}{N}∂_jN - [-\frac{N^j}{N}∂_jN -N(γ^{jk} - \frac{N^jN^k}{N^2})K_{jk} + ^{(3)}\nabla_j(N^j)]##

##= 2\sqrt{γ}K^i_i[Nγ^{jk}K_{jk} - ^{(3)}\nabla_j(N^j)]##

##= 2\sqrt{γ}K^i_i[Nγ^{jk}K_{jk} - γ^{jk}## ##^{(3)}\nabla_j(N_k)]##

##= -2\sqrt{γ}K^i_iγ^{jk}\,^{(4)}Γ_{k0j}##

I'd really appreciate it if someone can help me get rid of this last term!
 

Attachments

Physics news on Phys.org
TerryW said:

Homework Statement



I've been working through a paper by Alexey Golovnev, title 'ADM and massive gravity' arXiv.1302.0687v4 [gr-qc] 26 March 2013. I am hoping to use his result for the Einstein-Hilbert density to achieve my aim of finding a way to derive Equation 21.90 in MTW. I have worked my way through the paper and can see that all the equations given are OK, with one crucial exception:

Homework Equations



The final link in the chain is this:

##-2 \sqrt{-g}\nabla_μ (K^i_in^μ) = -2∂_0(\sqrt{γ}K^i_i) + 2\sqrt{γ}^{(3)}\nabla_j(K^i_iN^j)##

My attempt to prove this identity ends up with an extra term. Can anyone tell me where I've gone wrong?

The Attempt at a Solution



Using the derivations in the paper:

##-2 \sqrt{-g}\nabla_μ (K^i_in^μ) = -2 \sqrt{-g}^{(4)}\nabla_0 (K^i_in^0) - 2 \sqrt{-g}^{(4)}\nabla_j (K^i_in^j)##

##= -2 ^{(4)}\nabla_0 (\sqrt{γ}NK^i_i\frac{1}{N}) - 2 \sqrt{-g}^{(4)}\nabla_j (K^i_in^j)##

##= -2 ^{(4)}\nabla_0 (\sqrt{γ}K^i_i) - 2 \sqrt{-g}[∂_j(K^i_in^j) + ^{(4)}Γ^j_{αj}(K^i_in^α)]##

##= -2 ∂_0 (\sqrt{γ}K^i_i) - 2 \sqrt{-g}∂_j(K^i_in^j) -2\sqrt{-g} ^{(4)}Γ^j_{0j}(K^i_in^0) -2\sqrt{-g} ^{(4)}Γ^j_{kj}(K^i_in^k)##

##= -2 ∂_0 (\sqrt{γ}K^i_i) + 2 \sqrt{-g}∂_j(K^i_i\frac{N^j}{N}) -2\sqrt{-g} ^{(4)}Γ^j_{0j}(K^i_i\frac{1}{N}) +2\sqrt{-g} ^{(4)}Γ^j_{kj}(K^i_i\frac{N^k}{N})##

##= -2 ∂_0 (\sqrt{γ}K^i_i) + 2 \sqrt{-g}∂_j(K^i_iN^j)(\frac{1}{N}) +2 \sqrt{-g}(K^i_iN^j)∂_j(\frac{1}{N})-2\sqrt{γ}N^{(4)}Γ^j_{0j}(K^i_i\frac{1}{N})##
## +2\sqrt{γ} N^{(4)}Γ^j_{kj}(K^i_i\frac{N^k}{N})##

##= -2 ∂_0 (\sqrt{γ}K^i_i) + 2 \sqrt{γ}∂_j(K^i_iN^j) +2\sqrt{γ}^{(4)}Γ^j_{kj}K^i_iN^k+2\sqrt{-g}(K^i_iN^j)(\frac{-1}{N^2})∂_jN -2\sqrt{γ} ^{(4)}Γ^j_{0j}(K^i_i)##

##= -2 ∂_0 (\sqrt{γ}K^i_i) + 2 \sqrt{γ}∂_j(K^i_iN^j) +2\sqrt{γ}(^{(3)}Γ^j_{kj} +\frac{N^j}{N}K_{jk})K^i_iN^k)-2\sqrt{γ}K^i_i(\frac{N^j}{N}∂_jN + ^{(4)}Γ^j_{0j})##

##= -2 ∂_0 (\sqrt{γ}K^i_i) + 2 \sqrt{γ}^{(3)}\nabla_j(K^i_iN^j) +2\sqrt{γ}\frac{N^j}{N}K_{jk}K^i_iN^k -2\sqrt{γ}K^i_i\frac{N^j}{N}∂_jN -2\sqrt{γ}K^i_{i}## ##^{(4)}Γ^j_{0j}##

The first two terms are what I was aiming for. The three remaining terms are 'surplus' to requirements!

I can reduce these three terms down to just one as follows

##2\sqrt{γ}\frac{N^j}{N}K_{jk}K^i_iN^k -2\sqrt{γ}K^i_i\frac{N^j}{N}∂_jN -2\sqrt{γ}K^i_{i} ## ##^{(4)}Γ^j_{0j}##

##= 2\sqrt{γ}K^i_i[\frac{N^j}{N}K_{jk}N^k -\frac{N^j}{N}∂_jN - ^{(4)}Γ^j_{0j}]##

##= 2\sqrt{γ}K^i_i[\frac{N^j}{N}K_{jk}N^k -\frac{N^j}{N}∂_jN - [-\frac{N^j}{N}∂_jN -N(γ^{jk} - \frac{N^jN^k}{N^2})K_{jk} + ^{(3)}\nabla_j(N^j)]##

##= 2\sqrt{γ}K^i_i[Nγ^{jk}K_{jk} - ^{(3)}\nabla_j(N^j)]## (***)

##= 2\sqrt{γ}K^i_i[Nγ^{jk}K_{jk} - γ^{jk}## ##^{(3)}\nabla_j(N_k)]##

##= -2\sqrt{γ}K^i_iγ^{jk}\,^{(4)}Γ_{k0j}##

I'd really appreciate it if someone can help me get rid of this last term!

Resolution

If I use the general expression for the divergence of a vector (MTW 21.85 p 579):

##(A^α)_{;α} = \sqrt{-g}^{-½}(\sqrt{-g}A^α)_{,α}##

and then work on ##K_{ij} = -^{(4)}\nabla_in_j## (Golovnev (2)), I find that

##g^{ij}K_{ij} = K^i_i = -g^{ij}## ##^{(4)}\nabla_i n_j## ## = -^{(4)}\nabla_i n^i##

So ##\sqrt{-g}K^i_i = \sqrt{-g}^{(4)}\nabla_i\frac{N^i}{N} = (\sqrt{-g}\frac{N^i}{N})_{,i} = (\sqrtγN^i)_{,i}##

Now use the general expression for the divergence of a vector in the 3-D space

##^{(3)}\nabla_iA^i = \sqrtγ^{-½}(\sqrtγA^i)_{,i}## ...(1)

So ##\sqrtγNK^i_i = (\sqrtγN^i)_{,i} = \sqrtγ^{(3)}\nabla_iN^i##

So ##NK^i_i = ^{(3)}\nabla_iN^i##

which means that (***) above = 0, which achieves my aim of getting rid of the 'surplus to requirements' terms.This resolution was prompted by TSny, who sent me a much more elegant solution, again based on MTW 21.85 as follows;

## \sqrt{-g}^{(4)}\nabla_μ (K^i_in^μ) = (\sqrt{-g}(K^i_in^0)_{,0} - \sqrt{-g}K^i_in^j)_{j}##

##∴\sqrt{-g}^{(4)}\nabla_μ (K^i_in^μ) = (\frac {\sqrt{-g}}{N}K^i_i)_{,0} - (\frac {\sqrt{-g}}{N}K^i_iN^j)_{,j}##

Then using (1) and ##\sqrt{-g} = \sqrtγN##

##\sqrt{-g}^{(4)}\nabla_μ (K^i_in^μ) = (\sqrtγK^i_i)_{,0} - \sqrtγ^{(3)}\nabla_j(K^i_iN^j)##

QED!
 
  • Like
Likes nrqed
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top