A Deriving the perturbative expansion from Hubbard to Heisenberg

Click For Summary
The discussion centers on deriving the perturbative expansion from the Hubbard model to the Heisenberg model using an effective Hamiltonian. The self-consistent equation presented involves energy terms on both sides and utilizes projection operators for ground and excited states. The effective Hamiltonian is defined to encapsulate the contributions from both the unperturbed and perturbed Hamiltonians. The inquiry focuses on how the recursive solution of this effective Hamiltonian leads to a specific form that includes zero, second, and third-order terms. Clarification on this derivation is sought from participants familiar with the perturbative approach in quantum mechanics.
hokhani
Messages
561
Reaction score
18
TL;DR
I can not go one step further in this expansion.
In the youtube lecture “electron interaction and the Hubbard model” at the time 2:23:00, we have the following self-consistent equation with energy appearing at both sides:
$$(\hat P \hat H_0 \hat P+\hat P \hat H_1 \hat Q (E-\hat Q \hat H_0 \hat Q)^{-1} \hat Q \hat H_1 \hat P) |\phi \rangle_{g.s.} =E |\phi \rangle_{g.s.}$$
Where ##H_0## is the unperturbed Hamiltonian, ##H_1## the perturbation, ##|\phi \rangle_{g.s.}## is the ground state ket of the full Hamiltonian ##(H_0+H_1)##, and ##\hat P (\hat Q)## is the projection operator on the ground (excited) states of ##H_0##.
By defining the effective Hamiltonian as:
$$H_{eff}=(\hat P \hat H_0 \hat P+\hat P \hat H_1 \hat Q (E-\hat Q \hat H_0 \hat Q)^{-1} \hat Q \hat H_1 \hat P)$$
The self-consistent equation is as:
$$H_{eff}|\phi \rangle_{g.s.}=E|\phi \rangle_{g.s.}$$
So, my question:
How does the solution of this effective Hamiltonian, recursively, give the following equation?
$$H_{eff}=\hat P \hat H_0 \hat P+\hat P \hat H_1 \hat Q (E_0-\hat Q \hat H_0 \hat Q)^{-1} \hat Q \hat H_1 \hat P+\hat P \hat H_1 \hat Q (E_0-\hat Q \hat H_0 \hat Q)^{-1} \hat Q \hat H_1 \hat Q (E_0-\hat Q \hat H_0 \hat Q)^{-1} \hat Q \hat H_1 \hat P +$$
Where the first, second and third lines are respectively zero, second and third order terms.

I would be grateful if anyone could please provide any help with that.