A Deriving the perturbative expansion from Hubbard to Heisenberg

hokhani
Messages
552
Reaction score
15
TL;DR Summary
I can not go one step further in this expansion.
In the youtube lecture “electron interaction and the Hubbard model” at the time 2:23:00, we have the following self-consistent equation with energy appearing at both sides:
$$(\hat P \hat H_0 \hat P+\hat P \hat H_1 \hat Q (E-\hat Q \hat H_0 \hat Q)^{-1} \hat Q \hat H_1 \hat P) |\phi \rangle_{g.s.} =E |\phi \rangle_{g.s.}$$
Where ##H_0## is the unperturbed Hamiltonian, ##H_1## the perturbation, ##|\phi \rangle_{g.s.}## is the ground state ket of the full Hamiltonian ##(H_0+H_1)##, and ##\hat P (\hat Q)## is the projection operator on the ground (excited) states of ##H_0##.
By defining the effective Hamiltonian as:
$$H_{eff}=(\hat P \hat H_0 \hat P+\hat P \hat H_1 \hat Q (E-\hat Q \hat H_0 \hat Q)^{-1} \hat Q \hat H_1 \hat P)$$
The self-consistent equation is as:
$$H_{eff}|\phi \rangle_{g.s.}=E|\phi \rangle_{g.s.}$$
So, my question:
How does the solution of this effective Hamiltonian, recursively, give the following equation?
$$H_{eff}=\hat P \hat H_0 \hat P+\hat P \hat H_1 \hat Q (E_0-\hat Q \hat H_0 \hat Q)^{-1} \hat Q \hat H_1 \hat P+\hat P \hat H_1 \hat Q (E_0-\hat Q \hat H_0 \hat Q)^{-1} \hat Q \hat H_1 \hat Q (E_0-\hat Q \hat H_0 \hat Q)^{-1} \hat Q \hat H_1 \hat P +$$
Where the first, second and third lines are respectively zero, second and third order terms.

I would be grateful if anyone could please provide any help with that.
 
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top