A Deriving the perturbative expansion from Hubbard to Heisenberg

hokhani
Messages
561
Reaction score
18
TL;DR Summary
I can not go one step further in this expansion.
In the youtube lecture “electron interaction and the Hubbard model” at the time 2:23:00, we have the following self-consistent equation with energy appearing at both sides:
$$(\hat P \hat H_0 \hat P+\hat P \hat H_1 \hat Q (E-\hat Q \hat H_0 \hat Q)^{-1} \hat Q \hat H_1 \hat P) |\phi \rangle_{g.s.} =E |\phi \rangle_{g.s.}$$
Where ##H_0## is the unperturbed Hamiltonian, ##H_1## the perturbation, ##|\phi \rangle_{g.s.}## is the ground state ket of the full Hamiltonian ##(H_0+H_1)##, and ##\hat P (\hat Q)## is the projection operator on the ground (excited) states of ##H_0##.
By defining the effective Hamiltonian as:
$$H_{eff}=(\hat P \hat H_0 \hat P+\hat P \hat H_1 \hat Q (E-\hat Q \hat H_0 \hat Q)^{-1} \hat Q \hat H_1 \hat P)$$
The self-consistent equation is as:
$$H_{eff}|\phi \rangle_{g.s.}=E|\phi \rangle_{g.s.}$$
So, my question:
How does the solution of this effective Hamiltonian, recursively, give the following equation?
$$H_{eff}=\hat P \hat H_0 \hat P+\hat P \hat H_1 \hat Q (E_0-\hat Q \hat H_0 \hat Q)^{-1} \hat Q \hat H_1 \hat P+\hat P \hat H_1 \hat Q (E_0-\hat Q \hat H_0 \hat Q)^{-1} \hat Q \hat H_1 \hat Q (E_0-\hat Q \hat H_0 \hat Q)^{-1} \hat Q \hat H_1 \hat P +$$
Where the first, second and third lines are respectively zero, second and third order terms.

I would be grateful if anyone could please provide any help with that.
 
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Back
Top