onako
- 86
- 0
Given a symmetric matrix
A=\left(\begin{array}{ccccc}<br /> \sum a_{1s} & & & & \\<br /> & \ddots & & a_{ij} \\<br /> & & \ddots & & \\<br /> &a_{ij} & & \ddots & \\<br /> & & & & \sum w_{as}<br /> \end{array}\right) \in\mathbb{R}^{n\times n},<br />
with strictly positive entries a_{ij}, and with the diagonal entries being sum of off-diagonal entries residing
in the corresponding row/column, how to proceed with the proof for A being positive definite,
<br /> x^TAx>0<br />
for some non-zero vector x.
A=\left(\begin{array}{ccccc}<br /> \sum a_{1s} & & & & \\<br /> & \ddots & & a_{ij} \\<br /> & & \ddots & & \\<br /> &a_{ij} & & \ddots & \\<br /> & & & & \sum w_{as}<br /> \end{array}\right) \in\mathbb{R}^{n\times n},<br />
with strictly positive entries a_{ij}, and with the diagonal entries being sum of off-diagonal entries residing
in the corresponding row/column, how to proceed with the proof for A being positive definite,
<br /> x^TAx>0<br />
for some non-zero vector x.