What is the Correct Determinant for a Misprinted Matrix?

  • Thread starter Thread starter plucker_08
  • Start date Start date
  • Tags Tags
    Determinant
AI Thread Summary
The discussion revolves around determining the correct determinant for a misprinted matrix, specifically comparing matrices A and B. Participants highlight that row and column operations affect the determinant in specific ways, such as swapping rows multiplying the determinant by -1 and adding multiples of rows not changing it. Calculations reveal that the determinants of A and B do not maintain a consistent multiple relationship, suggesting the problem may be flawed. There is speculation that the instructor may have made an error in the problem setup, particularly regarding the values in the lower left corner of matrix B. Overall, the consensus is that the problem as presented is likely unsolvable due to these inconsistencies.
plucker_08
Messages
54
Reaction score
0
help me guys...
 

Attachments

  • 1.jpg
    1.jpg
    9.9 KB · Views: 483
Physics news on Phys.org
What have you tried?
 
I assume you're familiar with solving a 3x3 Matrix?
 
It looks to me like B can be derived from A by "row operations".

(and a few "column" operations- but they work the same way.)

Do you know how row-column operations on a matrix affect its determinant?

Swapping two rows (columns) multiplies the determinant by -1.
Multiplying a row (column) by a number multiplies the determinant by that number.
Adding a multiple of one row (column) to another doesn't change the determinant.
 
Last edited by a moderator:
i've tried the problem...but, the numerical coefficients of b is always wrong...
 
Here's my two cents, assuming that I haven't made any arithmetic errors.

Put c=e=g=1, and the rest zero, and compute the determinants for the two matrices. I got |A|=-1, |B|=-12.

Put b=i=1, and the rest zero, and again compute the determinants for the two matrices. I got |A|= -2, |B|= -8.

Consequently, if you're looking for |B| to be a multiple of |A| you are going to be disappointed. So I think that the suggestions given so far for solving this problem will, as the OP says, come up short.

The restriction that |A|=1 is only one equation restricting 7 unknowns. This could get ugly.

Carl
 
:smile:

the unknown values of the elements and its determinants are fixed values...

thanks in advance!
 
Last edited:
plucker_08 said:
the unknown values of the elements and its determinants are fixed values.

Of course everyone knows this already. Perhaps my post was too subtle.

Here's some guesses. You're taking a Linear Algebra class. You still don't have a solution to the problem. The instructor wrote the problem; it wasn't taken from a book. Instead, he made the problem up on his own (and thought that the answer was 12 or 44). Your instructor will admit the error sometime after the homework is due when some of the students complain that they can't work it either.

Carl
 
Last edited:
Possibly a misprint: if the lower left corner of B were 4h/2+ 2b, then it would be doable (and, unless I have misplaced an operation, the answer is -1/3). The instructer may have forgotten to divide the lower left corner by 3 when he (I think) multiplied the bottom row by 3.
 
Back
Top