adomad123
- 4
- 0
Homework Statement
Determine the values of x for which the following series converges. Remember to test the end points of the interval of convergence.
^{∞}_{n=0}\sum\frac{(1-)^{n+1}(x+4)^{n}}{n}
Homework Equations
I worked it down to
|x+4|<1
∴-5<x<-3
The Attempt at a Solution
When I come to test the end point when x=-3
Ʃ=\frac{(-1)^{n+1}(-1)^{n}}{n}
ALTERNATING SERIES
Test 1. See if lim_{n→∞}a_{n}=0
lim_{n→∞}\frac{(1)^{n}}{n}
=lim_{n→∞}\frac{(1)}{n} =0
test 2. See if a_{n+1}<a_{n}
a_{n+1}= \frac{1}{n+1}<\frac{1}{n}
∴a_{n+1}<a_{n}
hence, series converges when x=-3
When x=-5
Ʃ=\frac{(-1)^{n+1}(-1)^{n}}{n}
Test 1 see if lim_{n→∞}a_{n}=0\
lim_{n→∞}\frac{(-1)^{n}}{n}
=lim_{n→∞}\frac{\frac{(-1)^{n}}{n}}{1} =0
Test 2. a_{n+1}<a_{n}
a_{n+1}=\frac{-(-1)^{n}}{n+1}<\frac{(-1)^{n}}{n+1} (since negative of the other?
Hence, series converges when x=-5
∴ series converges when -5≤x≤-3
Not sure if I have the right answer. but I don't know what to do when I get a_{n} has the (-1)^{n}
Last edited: