PenKnight
- 11
- 0
Homework Statement
Same problem as this old post
https://www.physicsforums.com/showthread.php?t=188714
What I'm having problems with is determining the H_{ij} components of the Hamiltonian of a one dimension N site spin chain. And then getting out somehow energy value to prove
<br /> \lim_{n->\inf}\frac{E_{0}}{N} = \ln{2}+ \frac{1}{4}<br />
Homework Equations
The hamitonian of the spin chain
<br /> \sum^{k=0}_{N-1}[H_{z}(k)+H_{f}(k)]<br />
where
<br /> H_{z}(k)=S^{z}(k)S^{z}(k+1)<br />
<br /> H_{f}(k)=\frac{1}{2}[S^{+}(k)S^{-}(k+1)+S^{-}(k)S^{+}(k+1)]<br />
The above can be gain from determing Sx and Sy from the rasing and lowering operators.
The Attempt at a Solution
I can see that at any site location within a state ,( a state is some configuration of site which hold either +- 1/2), the hamilotinan will pull out these eigenvalues.
<br /> H|...\uparrow\uparrow... \rangle = S^{z}(k)S^{z}(k+1)|...\uparrow\uparrow... \rangle<br />
<br /> = S^{z}(k)\frac{1}{2}|...\uparrow\uparrow ...\rangle =\frac{1}{4}|...\uparrow\uparrow ...\rangle<br />
And for the other possible combinations
<br /> H|...\uparrow\downarrow... \rangle = -\frac{1}{4}|...\uparrow\downarrow ...\rangle + \frac{1}{2}|...\downarrow\uparrow... \rangle<br />
<br /> H|...\downarrow\uparrow ...\rangle = -\frac{1}{4}|...\downarrow\uparrow... \rangle + \frac{1}{2}|...\uparrow\downarrow... \rangle<br />
<br /> H|...\downarrow\downarrow...\rangle = \frac{1}{4}|...\downarrow\downarrow...\rangle<br />
But then finding the energy values ( taking the <\phi | H|\phi > )
will lead all states to having the same energy which is not correct. So either I've missed somthing or computing the H matrix incorrectly.