Determining Propagation vector from E(x,y,t)

  • Thread starter Thread starter priceless
  • Start date Start date
  • Tags Tags
    Propagation Vector
priceless
Messages
2
Reaction score
0

Homework Statement



E(x,y,t)=(2i/sqrt(5)) + (j/sqrt(5)) Eo cos( 2pi(1/lamda)[2x/sqrt(5) - y/sqrt(5)]-[ft] )

Homework Equations


I Know k =2pi/lamda for 1D wave
I know K vetor=k dot r
I know K vector shows the direction of propogation, and must be perpendicular to E and B.

The Attempt at a Solution


Got 1/3 points on this part of my exam.
Kvector=2pi (1/lamda) [2/sqrt(5) - 1/sqrt(5)] * (2i/sqrt(5)) + (j/sqrt(5))
I know I have to check for normalizaton, and it is normalized.

Obviously this is wrong. I'm not sure how to define k for a multi dimensional wave, and my textbook does not show any example problems for 3 dimensional waves., or shows solutions for any multidimensional waves that involve K.Is the answer simply the resultant vector of kx and ky?
sqrt( (2/sqrt(5))^2 + (1/sqrt(5))^2)) which just equals sqrt(1)=1.

Edit: Referred back to Griffiths electrodynamics, and think I Figured it out.

K vector = K * r = (2pi/lamda) ( 2x^ / sqrt(5) - 1y^ / sqrt(5))
where x^ and y^ indicate the unit vectors xhat and yhat, not x to a power of ____.
 
Last edited:
Physics news on Phys.org
What is your question?
I don't see what the problem statement is.
Also what are the meaning of those i and j, are those things quaternions?
What is the meaning of [ft]?
Four us and for yourself, take a little bit more time to explain your question properly.
 
Apologies, it was determine the propagation vector from this equation of a plane-polarized wave.
 
Within the cosine, you see something that depends on x,y and something that depends on t.
Propagation has something to do with following time development of points (lines, planes) with constant E through time. ## cos(\vec k \cdot \vec r - \omega t)## I seem to remember.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top