I Determining Relative Position of Space Object to Earth

Click For Summary
To determine the relative position of a space object to Earth, one can use orbital data from a NASA API to calculate the object's right ascension and declination. This information allows for the conversion to geographic coordinates, indicating where the object is directly overhead, such as above New York. Understanding the object's orbit type—whether it is elliptical, parabolic, or hyperbolic—is also essential for accurate positioning. The discussion emphasizes the importance of knowing the coordinates of the space object and Earth to apply the correct mathematical formulas for distance and position. Overall, with the right data and calculations, determining the object's position relative to Earth is feasible.
Py3_3
Messages
1
Reaction score
0
Hello,

i'm doing a project where the goal is to get the relative position of a space object to the earth, roughly. Basically, i want to say that this object is currently e.g. above New York.

The data for any given space object that i have is
3g8khyf.png

(It's sourced from an NASA API). The specific values are not important, just an example object.

I know nothing about how orbits are calculated and such, but I'm a pretty math-savvy guy and i'd be willing to research and learn it myself. But i don't want to spend 3 days digging into this stuff only to realize that what i want to do is not possible with the information i have.

So basically my question is the title. Also if you want to give me some pointers which of those values are important to me that would be amazing too.

Thanks in advance!

<Moderator's note: do not use external image servers. Upload your images to PhysicsForums.>
 
Last edited by a moderator:
Astronomy news on Phys.org
I think that if you want the relative position of it in relation to other space objects like the earth, the sun, the moon then first i think it has to stay in the same relative position. But the Earth and the moon are moving. Their positions change.

If you want you can calculate the distances of the space object from the moon, the sun and the earth. This i think may give you somehow its position relative to those space objects. The mathematical formula for the distance of two points(earth and the space object for example) in three dimensions of euclidean space is d=((x1-y1)2+ (x2-y2)2+(x3-y 3)2)1/2 where x=(x1,x2,x3) and y=(y1,y2,y3) are the coordinates of the points.

You substitute in the coordinates of x,y the corresponding coordinates of your space objects and you have their distance. If you have the distance of this space object from the Earth's ground is this ok?

If you want the orbit of a space object, i think its path to be an orbit it has to be regular repeating around another space object. Check the formulas of orbital mechanics if you want. Is it an elliptic, parabolic, hyperbolic orbit? Is it a free or conic orbit?

Is this for professional purposes? You have a professional project on this? It may not be for professional purposes i am just asking.

I do not know if i helped. I hope i did.
 
Py3_3 said:
Basically, i want to say that this object is currently e.g. above New York.

This should be fairly straight forward. The orbital data from NASA should allow you to calculate the right ascension and declination of an object at the current (or any other) time. Once you have the RA and Dec you can calculate the longitude and latitude of the point on the Earth where the object is at zenith.

I don't have references, but Google will give you the math and code examples for doing this.
 
I think what i wrote is not applicable about the distances of these space objects because someone should have their coordinates in a coordinate system. I am sorry for that.
 
Some 8 years ago I posted some experiments using 2 Software Defined Radios slaved to a common clock. The idea was measure small thermal noise by making correlation measurements between the IQ samples from each radio. This is a project that has kinda smoldered in the background where I've made progress in fits and starts. Since most (all?) RA signals are small thermal signals it seemed like the technique should be a natural approach. A recent thread discussing the feasibility of using SDRs to...
3I/ATLAS, also known as C/2025 N1 (ATLAS) and formerly designated as A11pl3Z, is an iinterstellar comet. It was discovered by the Asteroid Terrestrial-impact Last Alert System (ATLAS) station at Río Hurtado, Chile on 1 July 2025. Note: it was mentioned (as A11pl3Z) by DaveE in a new member's introductory thread. https://www.physicsforums.com/threads/brian-cox-lead-me-here.1081670/post-7274146 https://earthsky.org/space/new-interstellar-object-candidate-heading-toward-the-sun-a11pl3z/ One...
How does light maintain enough energy in the visible part of the spectrum for the naked eye to see in the night sky. Also, how did it start of in the visible frequency part of the spectrum. Was it, for example, photons being ejected at that frequency after high energy particle interaction. Or does the light become visible (spectrum) after hitting our atmosphere or space dust or something? EDIT: Actually I just thought. Maybe the EM starts off as very high energy (outside the visible...