Did i take this derivative of the vector right?

  • Thread starter Thread starter mr_coffee
  • Start date Start date
  • Tags Tags
    Derivative Vector
mr_coffee
Messages
1,613
Reaction score
1
Last edited by a moderator:
Physics news on Phys.org
Check that domain section...
 
ahh should be r >0 right? is the derivative right too? thanks!
 
No. Look what happens to the i vector when you have t=3
 
oh f word...
can i say, t < 0?
 
Well, the thing is that it can go above 0... but how far?

Start looking at the equations and ask yourself where each one has a valid result. For example, the i component can be t=<2
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top