Dif eq with particular solution

  • Thread starter Thread starter UrbanXrisis
  • Start date Start date
  • Tags Tags
    Particular solution
UrbanXrisis
Messages
1,192
Reaction score
1
find the particular solution for y''+25y=50sin(5t)

I am using variation of parameter:

y_p=U_1e^{5x}+U_2e^{-5x}
y_1=e^{5x},y_1'=5e^{5x},y_2=e^{-5x},y_2'=-5e^{-5x}
U_1=- \int \frac{e^{-5x}50sin(5t)}{-10}=-0.5e^{-5x} (cos5x+sin5x)
U_2= \int \frac{e^{5x}50sin(5t)}{-10}=0.5e^{5x} (cos5x-sin5x)

y_p=-0.5e^{-5x} (cos5x+sin5x) e^{5x}+ 0.5e^{5x} (cos5x-sin5x)e^{-5x}
y_p=-sin5x

I know this is wrong because the check doesn't equal 50sin(5t)

any ideas?
 
Last edited:
Physics news on Phys.org
Why do you use the e^5x-stuff??
They aren't solutions to the homogenous problem.
 
No. r^2=-25. What is r therefore?
 
yep, i finished the problem. had to use Eulers formula, never would have guessed! thanks!
 
Surely your textbook discusses the case when the characteristic roots are complex?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top