DiffEQ: Determining the largest interval of a solution

  • Thread starter Thread starter Kaylee!
  • Start date Start date
  • Tags Tags
    Diffeq Interval
Kaylee!
Messages
5
Reaction score
0
The question is to determine the solution to the following 1st order linear DE, along with the largest interval the solution is valid on:

cosx \frac{dy}{dx} + (sinx)y=1



Rewriting it shows it to be linear:
\frac{dy}{dx} + (tanx)y = secx

The intergrating factor is: e^{\int{tanx dx}} = e^{-ln|cosx|} = secx

Multiplying both sides of the DE by the integrating factor, and rewriting the LHS as a derivative of the product of the integrating factor and y:
\frac{d}{dx}[(secx)y]= sex^{2}x

(secx)y = tanx+c

y = sinx + c(cosx)

------------------

Now how do I determine the interval?
 
Physics news on Phys.org
I'm multiplying both sides of the equation by secx, which has a domain of (-pi/2, pi/2), so that's the interval. Is this reasoning correct?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top