1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

I Difference between Isothermal and Adiabatic?

  1. Jun 15, 2016 #1
    So for Isothermal, there is no change of T so hence delta U is 0. However, if there isn't a change of temperature, how is there a change of Q? I thought heat was the flow of energy of different temperatures. This confuses me for adiabatic as well. With no heat, how is there a temperature change. Also, apparently adiabatic processes, the change of temperature must be negative. However, why? For a second, I thought it may be because there's no added heat but there shouldn't be heat leaving either.
    I feel like this is all tangled up in my head and I would appreciate some clarification!
  2. jcsd
  3. Jun 15, 2016 #2
    Do you think that work being done by the gas or on the gas has anything to do with this?
  4. Jun 15, 2016 #3
    I did think about that. So if Q is 0 all the internal energy would go to work. However, I thought temperature change was required for there to be a change of internal energy. Then, I ended up back to, how is there no heat when there is a temperature change when heat is involved when there's a change of temperature. Even if I think that all the energy went to work, because of what I believed in the previous statement, it doesn't make sense to me.
  5. Jun 15, 2016 #4
    Yes. That's correct for an ideal gas.
    Heat is not the only thing that can cause a change in internal energy and, along with it, a temperature change. Work can also cause a change in internal energy (even without heat), and, along with it, a temperature change. This is the whole idea behind the first law of thermodynamics ##\Delta U=Q-W##, which is basically a statement of conservation of energy. Both Q (heat) and W (work) can cause the internal energy (and temperature) to change. Joule proved this experimentally when he did mechanical work on a liquid and its temperature increased. This basically showed that doing work on a system is equivalent to adding heat to the system.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted