- #1
alligatorman
- 113
- 0
f is differentiable on [tex](a,\infty)[/tex] and
[tex]\lim_{x\to\infty}\frac{f(x)}{x}=A[/tex]
I am trying to prove that there exists a sequence [tex]\{x_n\}, x_n\rightarrow \infty,[/tex] such that [tex]f'(x_n)\rightarrow A.[/tex]
Any help would be appreciated.
[tex]\lim_{x\to\infty}\frac{f(x)}{x}=A[/tex]
I am trying to prove that there exists a sequence [tex]\{x_n\}, x_n\rightarrow \infty,[/tex] such that [tex]f'(x_n)\rightarrow A.[/tex]
Any help would be appreciated.