MHB Differential Equation Challenge

AI Thread Summary
The discussion revolves around solving the differential equation involving the function y(x) and its derivative, along with an integral term and limits at specific points. Participants confirm the correctness of a solution provided by one member, indicating successful collaboration on the problem. The limits of y(x) at x=0 and x=ln(π/2) are crucial for determining the function's behavior. The conversation highlights the importance of addressing initial and boundary conditions in differential equations. Overall, the challenge emphasizes the collaborative effort in tackling complex mathematical problems.
Dethrone
Messages
716
Reaction score
0
Find $y(x)$ to satisfy $$ y(x)=y'(x)+\int e^{2x}y(x) \, dx+\lim_{{x}\to{-\infty}}y(x)$$ given $$\lim_{{x}\to{0}}y(x)=0$$ and $$\lim_{{x}\to{\ln\left({\pi/2}\right)}}y(x)=1.$$

Source: Calc I exam
 
Mathematics news on Phys.org
Calc I?? How many Red Bulls did your professor drink while he was writing the exam?

-Dan
 
I tried something:
Here's an attempt.
$$y(x) = y'(x) + \int e^{2x} y(x)dx + \lim_{x \to - \infty} y(x)$$
Writing $\int y'(x)dx = y(x)$ the above becomes
$$\int [y'(x)-e^{2x} y(x)]dx = y'(x) + \lim_{x \to -\infty} y(x)$$
Assuming the second derivative of $y(x)$ exists and assuming that $\lim_{x \to - \infty} y(x) < \infty$ (otherwise the equality would nog make sense) differentiating both sides leads to
$$y'(x)-e^{2x}y(x) = y''(x)$$
The above differential equation is not that hard to solve, the solution is given by
$$y(x) = c_1\sin(e^x)+c_2\cos(e^x)$$
where $c_1,c_2 \in \mathbb{R}$ need to be determined. We can do this by the given conditions. More precisely,

$$\lim_{x \to \ln\left(\frac{\pi}{2}\right)} y(x) = c_1 = 1$$
the second condition gives
$$\lim_{x \to 0} y(x) = \sin(1)+c_2 \cos(1)$$
therefore the solution is

$$y(x) = \sin(e^x) - \frac{\sin(1)}{\cos(1)}\cos(e^x)$$
 
Sorry Siron for forgetting to get back to you. That is the correct answer. :D Thanks for participating.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top