MHB Differential Equation Challenge

Dethrone
Messages
716
Reaction score
0
Find $y(x)$ to satisfy $$ y(x)=y'(x)+\int e^{2x}y(x) \, dx+\lim_{{x}\to{-\infty}}y(x)$$ given $$\lim_{{x}\to{0}}y(x)=0$$ and $$\lim_{{x}\to{\ln\left({\pi/2}\right)}}y(x)=1.$$

Source: Calc I exam
 
Mathematics news on Phys.org
Calc I?? How many Red Bulls did your professor drink while he was writing the exam?

-Dan
 
I tried something:
Here's an attempt.
$$y(x) = y'(x) + \int e^{2x} y(x)dx + \lim_{x \to - \infty} y(x)$$
Writing $\int y'(x)dx = y(x)$ the above becomes
$$\int [y'(x)-e^{2x} y(x)]dx = y'(x) + \lim_{x \to -\infty} y(x)$$
Assuming the second derivative of $y(x)$ exists and assuming that $\lim_{x \to - \infty} y(x) < \infty$ (otherwise the equality would nog make sense) differentiating both sides leads to
$$y'(x)-e^{2x}y(x) = y''(x)$$
The above differential equation is not that hard to solve, the solution is given by
$$y(x) = c_1\sin(e^x)+c_2\cos(e^x)$$
where $c_1,c_2 \in \mathbb{R}$ need to be determined. We can do this by the given conditions. More precisely,

$$\lim_{x \to \ln\left(\frac{\pi}{2}\right)} y(x) = c_1 = 1$$
the second condition gives
$$\lim_{x \to 0} y(x) = \sin(1)+c_2 \cos(1)$$
therefore the solution is

$$y(x) = \sin(e^x) - \frac{\sin(1)}{\cos(1)}\cos(e^x)$$
 
Sorry Siron for forgetting to get back to you. That is the correct answer. :D Thanks for participating.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top