MHB Differential Equation Challenge

Click For Summary
The discussion revolves around solving the differential equation involving the function y(x) and its derivative, along with an integral term and limits at specific points. Participants confirm the correctness of a solution provided by one member, indicating successful collaboration on the problem. The limits of y(x) at x=0 and x=ln(π/2) are crucial for determining the function's behavior. The conversation highlights the importance of addressing initial and boundary conditions in differential equations. Overall, the challenge emphasizes the collaborative effort in tackling complex mathematical problems.
Dethrone
Messages
716
Reaction score
0
Find $y(x)$ to satisfy $$ y(x)=y'(x)+\int e^{2x}y(x) \, dx+\lim_{{x}\to{-\infty}}y(x)$$ given $$\lim_{{x}\to{0}}y(x)=0$$ and $$\lim_{{x}\to{\ln\left({\pi/2}\right)}}y(x)=1.$$

Source: Calc I exam
 
Mathematics news on Phys.org
Calc I?? How many Red Bulls did your professor drink while he was writing the exam?

-Dan
 
I tried something:
Here's an attempt.
$$y(x) = y'(x) + \int e^{2x} y(x)dx + \lim_{x \to - \infty} y(x)$$
Writing $\int y'(x)dx = y(x)$ the above becomes
$$\int [y'(x)-e^{2x} y(x)]dx = y'(x) + \lim_{x \to -\infty} y(x)$$
Assuming the second derivative of $y(x)$ exists and assuming that $\lim_{x \to - \infty} y(x) < \infty$ (otherwise the equality would nog make sense) differentiating both sides leads to
$$y'(x)-e^{2x}y(x) = y''(x)$$
The above differential equation is not that hard to solve, the solution is given by
$$y(x) = c_1\sin(e^x)+c_2\cos(e^x)$$
where $c_1,c_2 \in \mathbb{R}$ need to be determined. We can do this by the given conditions. More precisely,

$$\lim_{x \to \ln\left(\frac{\pi}{2}\right)} y(x) = c_1 = 1$$
the second condition gives
$$\lim_{x \to 0} y(x) = \sin(1)+c_2 \cos(1)$$
therefore the solution is

$$y(x) = \sin(e^x) - \frac{\sin(1)}{\cos(1)}\cos(e^x)$$
 
Sorry Siron for forgetting to get back to you. That is the correct answer. :D Thanks for participating.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K