Differential Equation Challenge

Click For Summary

Discussion Overview

The discussion revolves around solving a differential equation of the form $$ y(x)=y'(x)+\int e^{2x}y(x) \, dx+\lim_{{x}\to{-\infty}}y(x)$$ with specific boundary conditions given by the limits of $y(x)$ as $x$ approaches 0 and $\ln(\pi/2)$. The scope includes mathematical reasoning and problem-solving related to differential equations.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • One participant presents the differential equation and boundary conditions to be solved.
  • Another participant acknowledges a previous interaction and confirms that a proposed solution is correct.

Areas of Agreement / Disagreement

The discussion does not appear to have significant disagreement, as one participant confirms the correctness of a solution. However, the details of the solution process are not fully explored in the posts.

Contextual Notes

There may be limitations in the discussion regarding the assumptions made in solving the differential equation and the specific methods used to arrive at the solution.

Who May Find This Useful

Participants interested in differential equations, mathematical problem-solving, and boundary value problems may find this discussion relevant.

Dethrone
Messages
716
Reaction score
0
Find $y(x)$ to satisfy $$ y(x)=y'(x)+\int e^{2x}y(x) \, dx+\lim_{{x}\to{-\infty}}y(x)$$ given $$\lim_{{x}\to{0}}y(x)=0$$ and $$\lim_{{x}\to{\ln\left({\pi/2}\right)}}y(x)=1.$$

Source: Calc I exam
 
Physics news on Phys.org
Calc I?? How many Red Bulls did your professor drink while he was writing the exam?

-Dan
 
I tried something:
Here's an attempt.
$$y(x) = y'(x) + \int e^{2x} y(x)dx + \lim_{x \to - \infty} y(x)$$
Writing $\int y'(x)dx = y(x)$ the above becomes
$$\int [y'(x)-e^{2x} y(x)]dx = y'(x) + \lim_{x \to -\infty} y(x)$$
Assuming the second derivative of $y(x)$ exists and assuming that $\lim_{x \to - \infty} y(x) < \infty$ (otherwise the equality would nog make sense) differentiating both sides leads to
$$y'(x)-e^{2x}y(x) = y''(x)$$
The above differential equation is not that hard to solve, the solution is given by
$$y(x) = c_1\sin(e^x)+c_2\cos(e^x)$$
where $c_1,c_2 \in \mathbb{R}$ need to be determined. We can do this by the given conditions. More precisely,

$$\lim_{x \to \ln\left(\frac{\pi}{2}\right)} y(x) = c_1 = 1$$
the second condition gives
$$\lim_{x \to 0} y(x) = \sin(1)+c_2 \cos(1)$$
therefore the solution is

$$y(x) = \sin(e^x) - \frac{\sin(1)}{\cos(1)}\cos(e^x)$$
 
Sorry Siron for forgetting to get back to you. That is the correct answer. :D Thanks for participating.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 1 ·
Replies
1
Views
668