PFStudent
- 169
- 0
Hey,
1. Homework Statement .
I wrote my own proof for the below, I was wondering if you guys could take a look at it and give me some feedback please. Particularly, I would like to know if this proof is rigorous enough.
Lemma 2.4 - Suppose f has a second derivative everywhere, and that,
<br /> {{f} + {f^{\prime\prime}}} = {0}<br />
<br /> {f(0)} = {0}<br />
<br /> {f^{\prime\prime}(0)}} = {0}<br />
Then,
<br /> {f(x)} = {0}<br />
2. Homework Equations .
Knowledge of Calculus.
3. The Attempt at a Solution .
Let,
<br /> {{f(x)}, {{{f}^{\prime}}{(x)}}, {{{f}^{\prime\prime}}{(x)}},...,} = {{f}, {{f}^{\prime}}, {{f}^{\prime\prime}},...,}<br />
Prove that,
<br /> {f} = {0}<br />
Proof,
<br /> {{f}+{f^{\prime\prime}}} = {0}<br />
<br /> {{\left({{f}^{\prime}}\right)}{\left({{f}+{{f}^{\prime\prime}}}\right)}} = {\left({0}\right)}{\left({{f}^{\prime}}\right)}<br />
<br /> {{{f}^{\prime}}{\left({{f}+{{f}^{\prime\prime}}}\right)}} = {0}<br />
<br /> {{\int_{}^{}}{\left[{{{f}^{\prime}}{\left({{f}{+{{f}^{\prime\prime}}}}\right)}}\right]}{dx}} = {{\int_{}^{}}{\left[{0}\right]}{dx}}<br /> {\textcolor{white}{.}}<br /> ,<br /> {\textcolor{white}{.}}<br /> {\textcolor{white}{.}}<br /> {\textcolor{white}{.}}<br /> Let<br /> {\textcolor{white}{.}}<br /> {0} = {a}<br />
<br /> {{{\int_{}^{}}}{f}{{f}^{\prime}}{dx}+{{\int_{}^{}}{{f}^{\prime}}{{f}^{\prime\prime}}{dx}}} = {{{\int_{}^{}}}{\left({a}\right)}{dx}}<br />
Let,
<br /> {\textcolor{white}{.}}<br /> {\textcolor{white}{.}}<br /> {\textcolor{white}{.}}<br /> {u} = {f}<br /> {\textcolor{white}{.}}<br /> {\textcolor{white}{.}}<br /> {\textcolor{white}{.}}<br /> {\textcolor{white}{.}}<br /> {\textcolor{white}{.}}<br /> {\textcolor{white}{.}}<br /> {\textcolor{white}{.}}<br /> {\textcolor{white}{.}}<br /> {\textcolor{white}{.}}<br /> {\textcolor{white}{.}}<br /> {\textcolor{white}{.}}<br /> {v} = {{f}^{\prime}}<br />
<br /> {du} = {{{f}^{\prime}}{dx}}<br /> {\textcolor{white}{.}}<br /> {\textcolor{white}{.}}<br /> {\textcolor{white}{.}}<br /> {dv} = {{{f}^{\prime\prime}}{dx}}<br />
<br /> {{{\int_{}^{}}{\left({u}\right)}{\left({du}\right)}}+{{\int_{}^{}}{\left({v}\right)}{\left({dv}\right)}}} = {{\int_{}^{}}{a}{dx}}<br />
<br /> {{\left({{\frac{{u}^{2}}{2}}+{{C}_{1}}}\right)}+{\left({{\frac{{v}^{2}}{2}}+{{C}_{2}}}\right)}} = {\left({{ax}+{C}}\right)}<br />
Let,
<br /> {{{C}_{1}}+{{C}_{2}}} = {C}<br />
<br /> {{{\frac{1}{2}}{\left({{{\left({f}\right)}^{2}}+{{\left({{f}^{\prime}}\right)}^{2}}}\right)}}+{\left({C}\right)}} = {{{\left({0}\right)}{x}}+{C}}<br />
<br /> {{\frac{1}{2}}{{\left({{{f}^{2}}+{{{f}^{\prime}}^{2}}}\right)}}} = {0}<br />
<br /> {{{\left({{{f}^{2}}+{{{f}^{\prime}}^{2}}}\right)}}} = {0}<br />
<br /> {{{\left({f(x)}\right)}^{2}}{+}{{\left({{{f}^{\prime}}{\left({x}\right)}}\right)}^{2}}} = {0}<br />
, for all {x}.
This implies that {{f(x)} = {0}} for all {x}.
<br /> {\therefore}<br />
<br /> {f} = {0}<br />
Thanks,
-PFStudent
EDIT: Thanks for the edit HallsofIvy.
1. Homework Statement .
I wrote my own proof for the below, I was wondering if you guys could take a look at it and give me some feedback please. Particularly, I would like to know if this proof is rigorous enough.
Lemma 2.4 - Suppose f has a second derivative everywhere, and that,
<br /> {{f} + {f^{\prime\prime}}} = {0}<br />
<br /> {f(0)} = {0}<br />
<br /> {f^{\prime\prime}(0)}} = {0}<br />
Then,
<br /> {f(x)} = {0}<br />
2. Homework Equations .
Knowledge of Calculus.
3. The Attempt at a Solution .
Let,
<br /> {{f(x)}, {{{f}^{\prime}}{(x)}}, {{{f}^{\prime\prime}}{(x)}},...,} = {{f}, {{f}^{\prime}}, {{f}^{\prime\prime}},...,}<br />
Prove that,
<br /> {f} = {0}<br />
Proof,
<br /> {{f}+{f^{\prime\prime}}} = {0}<br />
<br /> {{\left({{f}^{\prime}}\right)}{\left({{f}+{{f}^{\prime\prime}}}\right)}} = {\left({0}\right)}{\left({{f}^{\prime}}\right)}<br />
<br /> {{{f}^{\prime}}{\left({{f}+{{f}^{\prime\prime}}}\right)}} = {0}<br />
<br /> {{\int_{}^{}}{\left[{{{f}^{\prime}}{\left({{f}{+{{f}^{\prime\prime}}}}\right)}}\right]}{dx}} = {{\int_{}^{}}{\left[{0}\right]}{dx}}<br /> {\textcolor{white}{.}}<br /> ,<br /> {\textcolor{white}{.}}<br /> {\textcolor{white}{.}}<br /> {\textcolor{white}{.}}<br /> Let<br /> {\textcolor{white}{.}}<br /> {0} = {a}<br />
<br /> {{{\int_{}^{}}}{f}{{f}^{\prime}}{dx}+{{\int_{}^{}}{{f}^{\prime}}{{f}^{\prime\prime}}{dx}}} = {{{\int_{}^{}}}{\left({a}\right)}{dx}}<br />
Let,
<br /> {\textcolor{white}{.}}<br /> {\textcolor{white}{.}}<br /> {\textcolor{white}{.}}<br /> {u} = {f}<br /> {\textcolor{white}{.}}<br /> {\textcolor{white}{.}}<br /> {\textcolor{white}{.}}<br /> {\textcolor{white}{.}}<br /> {\textcolor{white}{.}}<br /> {\textcolor{white}{.}}<br /> {\textcolor{white}{.}}<br /> {\textcolor{white}{.}}<br /> {\textcolor{white}{.}}<br /> {\textcolor{white}{.}}<br /> {\textcolor{white}{.}}<br /> {v} = {{f}^{\prime}}<br />
<br /> {du} = {{{f}^{\prime}}{dx}}<br /> {\textcolor{white}{.}}<br /> {\textcolor{white}{.}}<br /> {\textcolor{white}{.}}<br /> {dv} = {{{f}^{\prime\prime}}{dx}}<br />
<br /> {{{\int_{}^{}}{\left({u}\right)}{\left({du}\right)}}+{{\int_{}^{}}{\left({v}\right)}{\left({dv}\right)}}} = {{\int_{}^{}}{a}{dx}}<br />
<br /> {{\left({{\frac{{u}^{2}}{2}}+{{C}_{1}}}\right)}+{\left({{\frac{{v}^{2}}{2}}+{{C}_{2}}}\right)}} = {\left({{ax}+{C}}\right)}<br />
Let,
<br /> {{{C}_{1}}+{{C}_{2}}} = {C}<br />
<br /> {{{\frac{1}{2}}{\left({{{\left({f}\right)}^{2}}+{{\left({{f}^{\prime}}\right)}^{2}}}\right)}}+{\left({C}\right)}} = {{{\left({0}\right)}{x}}+{C}}<br />
<br /> {{\frac{1}{2}}{{\left({{{f}^{2}}+{{{f}^{\prime}}^{2}}}\right)}}} = {0}<br />
<br /> {{{\left({{{f}^{2}}+{{{f}^{\prime}}^{2}}}\right)}}} = {0}<br />
<br /> {{{\left({f(x)}\right)}^{2}}{+}{{\left({{{f}^{\prime}}{\left({x}\right)}}\right)}^{2}}} = {0}<br />
, for all {x}.
This implies that {{f(x)} = {0}} for all {x}.
<br /> {\therefore}<br />
<br /> {f} = {0}<br />
Thanks,
-PFStudent
EDIT: Thanks for the edit HallsofIvy.
Last edited: