Differential Equations-Particular Integral

Mehta
Messages
1
Reaction score
0
1. The problem statement: I have to solve the following differential equation without using variation of parameters:
2. ((d2 y)/(d x2))+y= (cosh x) (cos x)
3. The Attempt at a Solution :

The auxiliary equation would become

D2 + 1 = 0,where D is the differential operator.
This means D2 = - 1,i.e. D= +/- i

Thus,the C. F. is
C1 cos x + C2 sin x
where C1 and C2 are constants.

Now to find the particular integral:

P. I. = (1 / (D2 + 1)) (cosh x) (cos x)

= (1/ (D2 + 1))(ex+e-x)(cos x)

=(1/ (D2 + 1))(ex)(cos x)+(1/ (D2 + 1))(e-x)(cos x)

=(ex) (1/((D+1)2+1))(cos x) + (e-x)(1/((D-1)2+1))(cos x)

=(ex)(1/(D2+2D+2))(cos x)+(e-x)(1/(D2-2D+2))(cos x)

=(ex)(1/(-1+2D+2))(cos x)+(e-x)(1/(-1-2D+2))(cos x)

=(ex)(1(2D-1)/((2D+1)(2D-1)))(cos x)+(e-x)(1(1+2D)/((1-2D)(1+2D)))(cos x)

=(ex)((2D-1)/(4D2-1))(cos x)+(e-x)((1+2D)/(1-4D2))(cos x)

What now to do next?

The answer is given to be ((2/5) (sin x) (sinh x))+((1/5) (cos x) (cosh x)).How do I get there?
 
Last edited:
Physics news on Phys.org
I must admit I have no idea what you're doing.

Why not use the method of undetermined coefficients to find the particular solution?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top