Differential Equations problem

afcwestwarrior
Messages
453
Reaction score
0

Homework Statement


y=sinx cosx -cosx y'+(tanx)y=cos^2 x



I know that I'm supposed to see if the Left hand side equals the Right hand side, but I'm having problems differentiating y=sinx cosx -cosx

Yea believe it or not
 
Last edited:
Physics news on Phys.org
y=\sin x\cos x-\cos x is a product

Product rule: (fg)'=fg'+gf'
 
Thanks
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top