_N3WTON_
- 350
- 3
Homework Statement
Solve the given initial value problem:
y'' + y = u(t-\pi) - u(t-2 \pi)
y(0) = 0
y'(0) = 1
Homework Equations
The Attempt at a Solution
First I took the Laplace transform of both sides:
\mathcal{L}[y'' + y ] = \mathcal{L}(u(t-\pi)) - \mathcal{L}(u(t-2 \pi))
(s^{2}Y(s) - sy(0) - y'(0)) + Y(s) = \frac{e^{-\pi s}}{s} - \frac{e^{-2 \pi s}}{s}
s^{2}Y(s) - 1 + Y(s) = \frac{e^{-\pi s}-e^{-2 \pi s}}{s} + 1
Y(s)(s^{2}+1) = \frac{e^{-\pi s}-e^{-2 \pi s}+s}{s}
Y(s) = \frac{e^{-\pi s}-e^{-2 \pi s} + s}{s(s^{2}+1)}
At this point I get stuck, I tried doing a partial fraction decomp, but that didn't seem to get me anywhere closer to the solution..