Stimpon
- 32
- 0
Homework Statement
Homework Equations
L[c]:=\int_{a}^{b}(\sum_{i,j=1}^{2}g_{ij}(c(t))c_{i}'(t)c_{j}'(t))^{1/2}dt
The Attempt at a Solution
So g_{ij}(x,y)=0 for i{\neq}j, c_{1}'(t)=-Rsin(t), c_{2}'(t)=Rcos(t)
so L[c]:=\int_{a}^{b}(\frac{1}{((Rsin(t))^{2}}R^{2}(sin^{2}(t)+cos^{2}(t))^{1/2}dt=\int_{a}^{b}\frac{1}{sin(t)}dt
However the solutions has
L[c]:=\int_{a}^{b}(\frac{1}{((Rcos(t))^{2}}R^{2}(sin^{2}(t)+cos^{2}(t))^{1/2}dt=\int_{a}^{b}\frac{1}{cos(t)}dt
and he then goes on to use the given identity to find an antiderivative for \frac{1}{cost}
but I don't see how he has cost where I have sint.
Is he making a mistake or am I?
Last edited: