Differentiating Kirchoff's voltage law expression

AI Thread Summary
The discussion focuses on differentiating the equation V0 - iR - q/C = 0 to derive the expression di/dt = -i/RC. Participants clarify the differentiation process, emphasizing the importance of treating R and C as constants. One contributor suggests that directly differentiating the original equation simplifies the solution, avoiding unnecessary substitutions. The conversation highlights the significance of methodical differentiation in solving circuit equations. Ultimately, the correct approach to differentiation is confirmed, leading to the desired result.
And123
Messages
2
Reaction score
0

Homework Statement



Differentiate V0 - iR - q/C = 0 to prove that di/dt = -i/RC.

Homework Equations



V0 - iR - q/C = 0
^ derived from previous question for a circuit that had one battery with emf V0, a resistor of resistance R and a capacitor of capacitance C (all in series).
di/dt = -i/RC

The Attempt at a Solution



V0 - iR - q/C = 0
V0 - (dq/dt)R - q/C = 0
V0C - (dq/dt)RC - q = 0
(dq/dt)RC = V0C - q
d/dt((dq/dt)RC) = d/dt(V0C - q)
RC(d/dt(dq/dt) = -dq/dt
RC(di/dt) = -i
di/dt = -i/RC

^ not sure if my maths makes sense (not very good at doing dif/integration when there are multiple variables). I did get the "answer" (which is easy, since its given), but obviously the method's what matters.

Thanks a lot!
 
Physics news on Phys.org
It's right but you may have gotten there quicker if you just differentiated this:

V0 - iR - q/C = 0

with respect to time right away. You'll notice the answer is in terms of di/dt so you don't really want to substitute i=dq/dt into that equation.
 
Thanks for the reply.

Do you mean like this?:

V0 - iR - q/C = 0
d/dt(V0 - iR - q/C) = d/dt(0)
d/dt(V0) + d/dt(-iR) + d/dt(-q/C) = 0
0 - R(di/dt) - (1/C)(dq/dt) = 0
-R(di/dt) - (i/C) = 0
di/dt = -i/(RC)

^ I pull out the R and C like they're constants (which I think is correct), and got rid of V0 like you would when you dif a constant.

Edit: I realize the 3rd step isn't required, but just to step it out for myself, I included it.
 
Yes that's right too. I wouldn't have shown so many steps but it's not too different anyway.

V0 - iR - q/C = 0
d/dt (V0 - iR - q/C) = d/dt (0)
-R di/dt - i/C = 0 ;; maybe they want you to say i = dq/dt here
di/dt = - i/(RC)
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top