Differentiation [ (7x^3+4)^(1/x) ] / Integration [ x^x(1+ln(x)) ]

unique_pavadrin
Messages
100
Reaction score
0

Homework Statement


Differentiate the following expression leaving in the simplest form:
\left( {7x^3 + 4} \right)^{\frac{1}{x}}

Integrate the following leaving in the simplest form:
x^x \left( {1 + \ln x} \right)

2. The attempt at a solution
Here is my worked solution for the differentiation problem:

\[<br /> \begin{array}{l}<br /> \frac{d}{{dx}}\left[ {\left( {7x^3 + 4} \right)^{\frac{1}{x}} } \right] \\ <br /> y = \left( {7x^3 + 4} \right)^{\frac{1}{x}} \\ <br /> \ln y = \left( {\frac{1}{x}} \right)\ln \left( {7x^3 + 4} \right) \\ <br /> = \frac{{\ln \left( {7x^3 + 4} \right)}}{x} \\ <br /> \frac{d}{{dx}}\left[ {\ln \left( {7x^3 + 4} \right)} \right] = \frac{1}{{7x^3 + 4}}.\frac{d}{{dx}}\left[ {7x^3 + 4} \right] \\ <br /> = \frac{{21x^2 }}{{7x^3 + 4}} \\ <br /> \frac{d}{{dx}}\left[ {\frac{{\ln \left( {7x^3 + 4} \right)}}{x}} \right] = \frac{{x\left( {\frac{{21x^2 }}{{7x^3 + 4}}} \right) + 1\left( {\ln \left( {7x^3 + 4} \right)} \right)}}{{x^2 }} \\ <br /> = \frac{{21x^3 + \left( {7x^3 + 4} \right)\ln \left( {7x^3 + 4} \right)}}{{x^2 }} \\ <br /> \\ <br /> \frac{1}{y} = \\ <br /> y&#039; = y.\frac{{21x^3 + \left( {7x^3 + 4} \right)\ln \left( {7x^3 + 4} \right)}}{{x^2 \left( {7x^3 + 4} \right)}} \\ <br /> = \frac{{\left( {7x^3 + 4} \right)^{\frac{1}{x}} \left( {21x^3 + \left( {7x^3 + 4} \right)\ln \left( {7x^3 + 4} \right)} \right)}}{{x^2 \left( {7x^3 + 4} \right)}} \\ <br /> = \frac{{\left( {7x^3 + 4} \right)^{\frac{1}{x} - 1} \left( {21x^3 + \left( {7x^3 + 4} \right)\ln \left( {7x^3 + 4} \right)} \right)}}{{x^2 }} \\ <br /> \end{array}<br /> \]<br />

______________________________________

For the integration problem I am not quite certain on how to integrate the expression given. I know from previous experience that the expression x^x when differentiated will give x^x(1+ln(x)).

______________________________________

many thanks for all suggestions and help
unique_pavadrin
 
Physics news on Phys.org
For the integration, my first thought was to make a substitution like u= xx. Of course, to do that I would need a derivative for xx. Find the derivative of xx and think you will realize that the integral is surprizingly easy.
 
I got this result, with a small difference:

(4 + 7*x^3)**(-1 + 1/x)*(21*x^3 - (4+7*x^3)*Log(4 + 7*x^3)))/x^2

The mistake appeared probably in the 7th line of your calculation.
You probably forgot the minus sign from the rule:

(a/b)' = (a'b-ab')/b²
 
Last edited:
Since from previous experience you know the integral is x^x, and x^x happens to appear in that integrand, the easiest way out will always be the substitution which gives the whole integrand! Same goes for any integral like that.
 
thank you for the reply and thank you lalbatros for point out my stupid mistake
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top