unique_pavadrin
- 100
- 0
Homework Statement
Differentiate the following expression leaving in the simplest form:
\left( {7x^3 + 4} \right)^{\frac{1}{x}}
Integrate the following leaving in the simplest form:
x^x \left( {1 + \ln x} \right)
2. The attempt at a solution
Here is my worked solution for the differentiation problem:
\[<br /> \begin{array}{l}<br /> \frac{d}{{dx}}\left[ {\left( {7x^3 + 4} \right)^{\frac{1}{x}} } \right] \\ <br /> y = \left( {7x^3 + 4} \right)^{\frac{1}{x}} \\ <br /> \ln y = \left( {\frac{1}{x}} \right)\ln \left( {7x^3 + 4} \right) \\ <br /> = \frac{{\ln \left( {7x^3 + 4} \right)}}{x} \\ <br /> \frac{d}{{dx}}\left[ {\ln \left( {7x^3 + 4} \right)} \right] = \frac{1}{{7x^3 + 4}}.\frac{d}{{dx}}\left[ {7x^3 + 4} \right] \\ <br /> = \frac{{21x^2 }}{{7x^3 + 4}} \\ <br /> \frac{d}{{dx}}\left[ {\frac{{\ln \left( {7x^3 + 4} \right)}}{x}} \right] = \frac{{x\left( {\frac{{21x^2 }}{{7x^3 + 4}}} \right) + 1\left( {\ln \left( {7x^3 + 4} \right)} \right)}}{{x^2 }} \\ <br /> = \frac{{21x^3 + \left( {7x^3 + 4} \right)\ln \left( {7x^3 + 4} \right)}}{{x^2 }} \\ <br /> \\ <br /> \frac{1}{y} = \\ <br /> y' = y.\frac{{21x^3 + \left( {7x^3 + 4} \right)\ln \left( {7x^3 + 4} \right)}}{{x^2 \left( {7x^3 + 4} \right)}} \\ <br /> = \frac{{\left( {7x^3 + 4} \right)^{\frac{1}{x}} \left( {21x^3 + \left( {7x^3 + 4} \right)\ln \left( {7x^3 + 4} \right)} \right)}}{{x^2 \left( {7x^3 + 4} \right)}} \\ <br /> = \frac{{\left( {7x^3 + 4} \right)^{\frac{1}{x} - 1} \left( {21x^3 + \left( {7x^3 + 4} \right)\ln \left( {7x^3 + 4} \right)} \right)}}{{x^2 }} \\ <br /> \end{array}<br /> \]<br />
______________________________________
For the integration problem I am not quite certain on how to integrate the expression given. I know from previous experience that the expression x^x when differentiated will give x^x(1+ln(x)).
______________________________________
many thanks for all suggestions and help
unique_pavadrin