Diffraction of a circular aperture

AI Thread Summary
The discussion centers on the confusion surrounding the Airy disc diffraction pattern produced by a circular aperture, particularly regarding the intensity formula J1(x)/x, where J1 is the first-order Bessel function, which is zero at x=0 despite the Airy disc having a central maximum. Participants clarify that when transitioning from rectangular to circular coordinates in diffraction calculations, the results shift from sine and cosine functions to Bessel functions, maintaining similar properties at x=0. Additionally, there is mention of using a circular slit (annulus) to generate a Bessel beam, with inquiries about the validity of this claim and where to find more information. The conversation also touches on the diffraction pattern of a rectangular slit, which is based on the sin(x)/x function, emphasizing the importance of understanding limits in these contexts. Advanced optics resources, such as "Born and Wolf," are recommended for further exploration of these concepts.
KFC
Messages
477
Reaction score
4
It is quite typical example for a text to mention Airy disc (a diffraction patten for a circular aperture), also in wiki http://en.wikipedia.org/wiki/Airy_disc. But what wiki confusing me is , in the mathematical details section, the intensity is given by J1(x)/x, where J1 is the first order Bessel function, it is ZERO around x=0. But the Airy disc has a maximum in the center, so how can on use J1(x)/x to describe an Airy disc?

And I saw some introduction on using a circular slit (annulus) to produce a diffraction pattern and the it is said that annulus will produce a bessel beam on the screen. Any one know if this is true and where can I find some information on this?
 
Science news on Phys.org
The intensity should be J0(x)/x: also called a 'sombrero' function.

edit: oops... yep, it's J1(x)/x.
 
Last edited:
KFC said:
It is quite typical example for a text to mention Airy disc (a diffraction patten for a circular aperture), also in wiki http://en.wikipedia.org/wiki/Airy_disc. But what wiki confusing me is , in the mathematical details section, the intensity is given by J1(x)/x, where J1 is the first order Bessel function, it is ZERO around x=0. But the Airy disc has a maximum in the center, so how can on use J1(x)/x to describe an Airy disc?

And I saw some introduction on using a circular slit (annulus) to produce a diffraction pattern and the it is said that annulus will produce a bessel beam on the screen. Any one know if this is true and where can I find some information on this?

Any idea what the diffraction pattern of a rectangular slit is? Hint: It's based on Sin(x)/x. Go look up that function. Notice how when X = 0 that sin (x) = 0? But 0/0 is undefined. Hence one must look at the limit of the sin(x)/x function as x -> 0. It's NOT zero! Go Google the sinx/x function and see what it looks like!

well, when you shift from rectangular coordinates to circular coordinates the calculation of the diffraction patterns shifts from Fourier-style results (with sin and cos) to Bessle function results. There you end up with J1(x)/x which is analogous to the sinx/x above. And the same ideas apply at x = 0. OK?

For more information go look at any advanced optics book such as Born and Wolf.
 
Thread 'A quartet of epi-illumination methods'
Well, it took almost 20 years (!!!), but I finally obtained a set of epi-phase microscope objectives (Zeiss). The principles of epi-phase contrast is nearly identical to transillumination phase contrast, but the phase ring is a 1/8 wave retarder rather than a 1/4 wave retarder (because with epi-illumination, the light passes through the ring twice). This method was popular only for a very short period of time before epi-DIC (differential interference contrast) became widely available. So...
I am currently undertaking a research internship where I am modelling the heating of silicon wafers with a 515 nm femtosecond laser. In order to increase the absorption of the laser into the oxide layer on top of the wafer it was suggested we use gold nanoparticles. I was tasked with modelling the optical properties of a 5nm gold nanoparticle, in particular the absorption cross section, using COMSOL Multiphysics. My model seems to be getting correct values for the absorption coefficient and...
After my surgery this year, gas remained in my eye for a while. The light air bubbles appeared to sink to the bottom, and I realized that the brain was processing the information to invert the up/down/left/right image transferred to the retina. I have a question about optics and ophthalmology. Does the inversion of the image transferred to the retina depend on the position of the intraocular focal point of the lens of the eye? For example, in people with farsightedness, the focal point is...

Similar threads

Back
Top