Direct product of faithful representations into direct sum

rkrsnan
Messages
53
Reaction score
0
Direct product of two irreducible representations of a finite group can be decomposed into a direct sum of irreducible representations. So, starting from a single faithful irreducible representation, is it possible generate every other irreducible representation by successively taking direct products?

My second question is (if it makes sense), can we have a finite group in which none of the irreducible representations are faithful?

Thanks.
 
Physics news on Phys.org
rkrsnan said:
Direct product of two irreducible representations of a finite group can be decomposed into a direct sum of irreducible representations. So, starting from a single faithful irreducible representation, is it possible generate every other irreducible representation by successively taking direct products?
Do you mean to say tensor products here instead of direct products? If so, then the answer to your question is in some sense affirmative. A result due to Molien (sometimes called the Burnside-Molien theorem) says that every irreducible representation of a finite group is contained inside some tensor power V^{\otimes n} of a faithful irreducible representation V.

My second question is (if it makes sense), can we have a finite group in which none of the irreducible representations are faithful?
Yes. For example Z/2Z x Z/2Z doesn't have any. You can spot this by looking at the character table: if the the column corresponding to \chi has \chi(g)=\chi(1) for some g\neq 1 then necessarily g \in \ker \chi and \chi isn't faithful.

Thus there are lots of other examples, e.g. any noncyclic abelian group, and more generally any group with noncyclic center.
 
Thank you so much! That was totally what I wanted to know.

PS: Yes, I should have written 'tensor product' instead of 'direct product'.
 
No problem. By the way, the end of my first paragraph above should of course read "of a faithful representation V" and not "of a faithful irreducible representation V" (as there might not be such a V! :smile:).
 
Yep, understood.
About the cyclic center and having faithful irreducible reps, does this result work if the center is identity? I can find examples of groups in which center is identity; in some cases faithful irreps exist and in some others it doesn't.
 
Yes, you're right - the center being cyclic is a necessary but by no means sufficient condition!
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top